Cargando…
Convergence and norm estimates of Hermite interpolation at zeros of Chevyshev polynomials
In this paper, we investigate the simultaneous approximation of a function f(x) and its derivative [Formula: see text] by Hermite interpolation operator [Formula: see text] based on Chevyshev polynomials. We also establish general theorem on extreme points for Hermite interpolation operator. Some re...
Autores principales: | Al-Khaled, Kamel, Alquran, Marwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118382/ https://www.ncbi.nlm.nih.gov/pubmed/27933248 http://dx.doi.org/10.1186/s40064-016-3667-2 |
Ejemplares similares
-
Generation of multivariate Hermite interpolating polynomials
por: Tavares, Santiago Alves
Publicado: (2005) -
Atomic Electronic
Structure Calculations with Hermite
Interpolating Polynomials
por: Lehtola, Susi
Publicado: (2023) -
Optimal Sixteenth Order Convergent Method Based on Quasi-Hermite Interpolation for Computing Roots
por: Zafar, Fiza, et al.
Publicado: (2014) -
Interpolation and approximation by polynomials
por: Phillips, George M
Publicado: (2003) -
Some symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials
por: Khan, Waseem A., et al.
Publicado: (2016)