Cargando…
Pyrcca: Regularized Kernel Canonical Correlation Analysis in Python and Its Applications to Neuroimaging
In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polyn...
Autores principales: | Bilenko, Natalia Y., Gallant, Jack L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118469/ https://www.ncbi.nlm.nih.gov/pubmed/27920675 http://dx.doi.org/10.3389/fninf.2016.00049 |
Ejemplares similares
-
Estimating multivariate similarity between neuroimaging datasets with sparse canonical correlation analysis: an application to perfusion imaging
por: Rosa, Maria J., et al.
Publicado: (2015) -
Decoding the Semantic Content of Natural Movies from Human Brain Activity
por: Huth, Alexander G., et al.
Publicado: (2016) -
Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python
por: Gorgolewski, Krzysztof, et al.
Publicado: (2011) -
Neuroimaging, Genetics, and Clinical Data Sharing in Python Using the CubicWeb Framework
por: Grigis, Antoine, et al.
Publicado: (2017) -
Kernel canonical correlation analysis for assessing gene–gene interactions and application to ovarian cancer
por: Larson, Nicholas B, et al.
Publicado: (2014)