Cargando…
Local expectation violations result in global activity gain in primary visual cortex
During natural perception, we often form expectations about upcoming input. These expectations are usually multifaceted – we expect a particular object at a particular location. However, expectations about spatial location and stimulus features have mostly been studied in isolation, and it is unclea...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118700/ https://www.ncbi.nlm.nih.gov/pubmed/27874098 http://dx.doi.org/10.1038/srep37706 |
Sumario: | During natural perception, we often form expectations about upcoming input. These expectations are usually multifaceted – we expect a particular object at a particular location. However, expectations about spatial location and stimulus features have mostly been studied in isolation, and it is unclear whether feature-based expectation can be spatially specific. Interestingly, feature-based attention automatically spreads to unattended locations. It is still an open question whether the neural mechanisms underlying feature-based expectation differ from those underlying feature-based attention. Therefore, establishing whether the effects of feature-based expectation are spatially specific may inform this debate. Here, we investigated this by inducing expectations of a specific stimulus feature at a specific location, and probing the effects on sensory processing across the visual field using fMRI. We found an enhanced sensory response for unexpected stimuli, which was elicited only when there was a violation of expectation at the specific location where participants formed a stimulus expectation. The neural consequences of this expectation violation, however, spread to cortical locations processing the stimulus in the opposite hemifield. This suggests that an expectation violation at one location in the visual world can lead to a spatially non-specific gain increase across the visual field. |
---|