Cargando…

Proteolipid protein–deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling

Hereditary spastic paraplegia (HSP) is a neurological syndrome characterized by degeneration of central nervous system (CNS) axons. Mutated HSP proteins include myelin proteolipid protein (PLP) and axon-enriched proteins involved in mitochondrial function, smooth endoplasmic reticulum (SER) structur...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Xinghua, Kidd, Grahame J., Ohno, Nobuhiko, Perkins, Guy A., Ellisman, Mark H., Bastian, Chinthasagar, Brunet, Sylvain, Baltan, Selva, Trapp, Bruce D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119941/
https://www.ncbi.nlm.nih.gov/pubmed/27872255
http://dx.doi.org/10.1083/jcb.201607099
_version_ 1782469145403588608
author Yin, Xinghua
Kidd, Grahame J.
Ohno, Nobuhiko
Perkins, Guy A.
Ellisman, Mark H.
Bastian, Chinthasagar
Brunet, Sylvain
Baltan, Selva
Trapp, Bruce D.
author_facet Yin, Xinghua
Kidd, Grahame J.
Ohno, Nobuhiko
Perkins, Guy A.
Ellisman, Mark H.
Bastian, Chinthasagar
Brunet, Sylvain
Baltan, Selva
Trapp, Bruce D.
author_sort Yin, Xinghua
collection PubMed
description Hereditary spastic paraplegia (HSP) is a neurological syndrome characterized by degeneration of central nervous system (CNS) axons. Mutated HSP proteins include myelin proteolipid protein (PLP) and axon-enriched proteins involved in mitochondrial function, smooth endoplasmic reticulum (SER) structure, and microtubule (MT) stability/function. We characterized axonal mitochondria, SER, and MTs in rodent optic nerves where PLP is replaced by the peripheral nerve myelin protein, P(0) (P(0)-CNS mice). Mitochondrial pathology and degeneration were prominent in juxtaparanodal axoplasm at 1 mo of age. In wild-type (WT) optic nerve axons, 25% of mitochondria–SER associations occurred on extensions of the mitochondrial outer membrane. Mitochondria–SER associations were reduced by 86% in 1-mo-old P(0)-CNS juxtaparanodal axoplasm. 1-mo-old P(0)-CNS optic nerves were more sensitive to oxygen-glucose deprivation and contained less adenosine triphosphate (ATP) than WT nerves. MT pathology and paranodal axonal ovoids were prominent at 6 mo. These data support juxtaparanodal mitochondrial degeneration, reduced mitochondria–SER associations, and reduced ATP production as causes of axonal ovoid formation and axonal degeneration.
format Online
Article
Text
id pubmed-5119941
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-51199412017-05-21 Proteolipid protein–deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling Yin, Xinghua Kidd, Grahame J. Ohno, Nobuhiko Perkins, Guy A. Ellisman, Mark H. Bastian, Chinthasagar Brunet, Sylvain Baltan, Selva Trapp, Bruce D. J Cell Biol Research Articles Hereditary spastic paraplegia (HSP) is a neurological syndrome characterized by degeneration of central nervous system (CNS) axons. Mutated HSP proteins include myelin proteolipid protein (PLP) and axon-enriched proteins involved in mitochondrial function, smooth endoplasmic reticulum (SER) structure, and microtubule (MT) stability/function. We characterized axonal mitochondria, SER, and MTs in rodent optic nerves where PLP is replaced by the peripheral nerve myelin protein, P(0) (P(0)-CNS mice). Mitochondrial pathology and degeneration were prominent in juxtaparanodal axoplasm at 1 mo of age. In wild-type (WT) optic nerve axons, 25% of mitochondria–SER associations occurred on extensions of the mitochondrial outer membrane. Mitochondria–SER associations were reduced by 86% in 1-mo-old P(0)-CNS juxtaparanodal axoplasm. 1-mo-old P(0)-CNS optic nerves were more sensitive to oxygen-glucose deprivation and contained less adenosine triphosphate (ATP) than WT nerves. MT pathology and paranodal axonal ovoids were prominent at 6 mo. These data support juxtaparanodal mitochondrial degeneration, reduced mitochondria–SER associations, and reduced ATP production as causes of axonal ovoid formation and axonal degeneration. The Rockefeller University Press 2016-11-21 /pmc/articles/PMC5119941/ /pubmed/27872255 http://dx.doi.org/10.1083/jcb.201607099 Text en © 2016 Yin et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
spellingShingle Research Articles
Yin, Xinghua
Kidd, Grahame J.
Ohno, Nobuhiko
Perkins, Guy A.
Ellisman, Mark H.
Bastian, Chinthasagar
Brunet, Sylvain
Baltan, Selva
Trapp, Bruce D.
Proteolipid protein–deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling
title Proteolipid protein–deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling
title_full Proteolipid protein–deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling
title_fullStr Proteolipid protein–deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling
title_full_unstemmed Proteolipid protein–deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling
title_short Proteolipid protein–deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling
title_sort proteolipid protein–deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119941/
https://www.ncbi.nlm.nih.gov/pubmed/27872255
http://dx.doi.org/10.1083/jcb.201607099
work_keys_str_mv AT yinxinghua proteolipidproteindeficientmyelinpromotesaxonalmitochondrialdysfunctionviaalteredmetaboliccoupling
AT kiddgrahamej proteolipidproteindeficientmyelinpromotesaxonalmitochondrialdysfunctionviaalteredmetaboliccoupling
AT ohnonobuhiko proteolipidproteindeficientmyelinpromotesaxonalmitochondrialdysfunctionviaalteredmetaboliccoupling
AT perkinsguya proteolipidproteindeficientmyelinpromotesaxonalmitochondrialdysfunctionviaalteredmetaboliccoupling
AT ellismanmarkh proteolipidproteindeficientmyelinpromotesaxonalmitochondrialdysfunctionviaalteredmetaboliccoupling
AT bastianchinthasagar proteolipidproteindeficientmyelinpromotesaxonalmitochondrialdysfunctionviaalteredmetaboliccoupling
AT brunetsylvain proteolipidproteindeficientmyelinpromotesaxonalmitochondrialdysfunctionviaalteredmetaboliccoupling
AT baltanselva proteolipidproteindeficientmyelinpromotesaxonalmitochondrialdysfunctionviaalteredmetaboliccoupling
AT trappbruced proteolipidproteindeficientmyelinpromotesaxonalmitochondrialdysfunctionviaalteredmetaboliccoupling