Cargando…
Impact of a Collective Intelligence Tailored Messaging System on Smoking Cessation: The Perspect Randomized Experiment
BACKGROUND: Outside health care, content tailoring is driven algorithmically using machine learning compared to the rule-based approach used in current implementations of computer-tailored health communication (CTHC) systems. A special class of machine learning systems (“recommender systems”) are us...
Autores principales: | Sadasivam, Rajani Shankar, Borglund, Erin M, Adams, Roy, Marlin, Benjamin M, Houston, Thomas K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5120237/ https://www.ncbi.nlm.nih.gov/pubmed/27826134 http://dx.doi.org/10.2196/jmir.6465 |
Ejemplares similares
-
Comparison of a Collective Intelligence Tailored Messaging System on Smoking Cessation Between African American and White People Who Smoke: Quasi-Experimental Design
por: Faro, Jamie M, et al.
Publicado: (2020) -
Collective-Intelligence Recommender Systems: Advancing Computer Tailoring
for Health Behavior Change Into the 21st Century
por: Sadasivam, Rajani Shankar, et al.
Publicado: (2016) -
Evaluating the use of a recommender system for selecting optimal messages for smoking cessation: patterns and effects of user-system engagement
por: Chen, Jinying, et al.
Publicado: (2021) -
Share2Quit: Web-Based Peer-Driven Referrals for Smoking Cessation
por: Sadasivam, Rajani S, et al.
Publicado: (2013) -
An Observational Study of Social and Emotional Support in Smoking Cessation Twitter Accounts: Content Analysis of Tweets
por: Rocheleau, Mary, et al.
Publicado: (2015)