Cargando…

NR4A1 Knockdown Suppresses Seizure Activity by Regulating Surface Expression of NR2B

Nuclear receptor subfamily 4 group A member 1 (NR4A1), a downstream target of CREB that is a key regulator of epileptogenesis, has been implicated in a variety of biological processes and was previously identified as a seizure-associated molecule. However, the relationship between NR4A1 and epilepto...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yanke, Chen, Guojun, Gao, Baobing, Li, Yunlin, Liang, Shuli, Wang, Xiaofei, Wang, Xuefeng, Zhu, Binglin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5120300/
https://www.ncbi.nlm.nih.gov/pubmed/27876882
http://dx.doi.org/10.1038/srep37713
Descripción
Sumario:Nuclear receptor subfamily 4 group A member 1 (NR4A1), a downstream target of CREB that is a key regulator of epileptogenesis, has been implicated in a variety of biological processes and was previously identified as a seizure-associated molecule. However, the relationship between NR4A1 and epileptogenesis remains unclear. Here, we showed that NR4A1 protein was predominantly expressed in neurons and up-regulated in patients with epilepsy as well as pilocarpine-induced mouse epileptic models. NR4A1 knockdown by lentivirus transfection (lenti-shNR4A1) alleviated seizure severity and prolonged onset latency in mouse models. Moreover, reciprocal coimmunoprecipitation of NR4A1 and NR2B demonstrated their interaction. Furthermore, the expression of p-NR2B (Tyr1472) in epileptic mice and the expression of NR2B in the postsynaptic density (PSD) were significantly reduced in the lenti-shNR4A1 group, indicating that NR4A1 knockdown partly decreased surface NR2B by promoting NR2B internalization. These results are the first to indicate that the expression of NR4A1 in epileptic brain tissues may provide new insights into the molecular mechanisms underlying epilepsy.