Cargando…

Sensory Conflict Disrupts Activity of the Drosophila Circadian Network

Periodic changes in light and temperature synchronize the Drosophila circadian clock, but the question of how the fly brain integrates these two input pathways to set circadian time remains unanswered. We explore multisensory cue combination by testing the resilience of the circadian network to conf...

Descripción completa

Detalles Bibliográficos
Autores principales: Harper, Ross E.F., Dayan, Peter, Albert, Joerg T., Stanewsky, Ralf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5120367/
https://www.ncbi.nlm.nih.gov/pubmed/27829142
http://dx.doi.org/10.1016/j.celrep.2016.10.029
Descripción
Sumario:Periodic changes in light and temperature synchronize the Drosophila circadian clock, but the question of how the fly brain integrates these two input pathways to set circadian time remains unanswered. We explore multisensory cue combination by testing the resilience of the circadian network to conflicting environmental inputs. We show that misaligned light and temperature cycles can lead to dramatic changes in the daily locomotor activities of wild-type flies during and after exposure to sensory conflict. This altered behavior is associated with a drastic reduction in the amplitude of PERIOD (PER) oscillations in brain clock neurons and desynchronization between light- and temperature-sensitive neuronal subgroups. The behavioral disruption depends heavily on the phase relationship between light and temperature signals. Our results represent a systematic quantification of multisensory integration in the Drosophila circadian system and lend further support to the view of the clock as a network of coupled oscillatory subunits.