Cargando…

A discriminant analysis prediction model of non-syndromic cleft lip with or without cleft palate based on risk factors

BACKGROUND: A risk prediction model of non-syndromic cleft lip with or without cleft palate (NSCL/P) was established by a discriminant analysis to predict the individual risk of NSCL/P in pregnant women. METHODS: A hospital-based case–control study was conducted with 113 cases of NSCL/P and 226 cont...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Huixia, Luo, Miyang, Luo, Jiayou, Zheng, Jianfei, Zeng, Rong, Du, Qiyun, Fang, Junqun, Ouyang, Na
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5120438/
https://www.ncbi.nlm.nih.gov/pubmed/27876010
http://dx.doi.org/10.1186/s12884-016-1116-4
Descripción
Sumario:BACKGROUND: A risk prediction model of non-syndromic cleft lip with or without cleft palate (NSCL/P) was established by a discriminant analysis to predict the individual risk of NSCL/P in pregnant women. METHODS: A hospital-based case–control study was conducted with 113 cases of NSCL/P and 226 controls without NSCL/P. The cases and the controls were obtained from 52 birth defects’ surveillance hospitals in Hunan Province, China. A questionnaire was administered in person to collect the variables relevant to NSCL/P by face to face interviews. Logistic regression models were used to analyze the influencing factors of NSCL/P, and a stepwise Fisher discriminant analysis was subsequently used to construct the prediction model. RESULTS: In the univariate analysis, 13 influencing factors were related to NSCL/P, of which the following 8 influencing factors as predictors determined the discriminant prediction model: family income, maternal occupational hazards exposure, premarital medical examination, housing renovation, milk/soymilk intake in the first trimester of pregnancy, paternal occupational hazards exposure, paternal strong tea drinking, and family history of NSCL/P. The model had statistical significance (lambda = 0.772, chi-square = 86.044, df = 8, P < 0.001). Self-verification showed that 83.8 % of the participants were correctly predicted to be NSCL/P cases or controls with a sensitivity of 74.3 % and a specificity of 88.5 %. The area under the receiver operating characteristic curve (AUC) was 0.846. CONCLUSIONS: The prediction model that was established using the risk factors of NSCL/P can be useful for predicting the risk of NSCL/P. Further research is needed to improve the model, and confirm the validity and reliability of the model.