Cargando…
High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis
BACKGROUND: Twin studies are powerful models to elucidate epigenetic modifications resulting from gene–environment interactions. Yet, commonly a limited number of clinical twin samples are available, leading to an underpowered situation afflicted with false positives and hampered by low sensitivity....
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5120506/ https://www.ncbi.nlm.nih.gov/pubmed/27876072 http://dx.doi.org/10.1186/s13073-016-0374-0 |
_version_ | 1782469254657867776 |
---|---|
author | Gomez-Cabrero, David Almgren, Malin Sjöholm, Louise K. Hensvold, Aase H. Ringh, Mikael V. Tryggvadottir, Rakel Kere, Juha Scheynius, Annika Acevedo, Nathalie Reinius, Lovisa Taub, Margaret A. Montano, Carolina Aryee, Martin J. Feinberg, Jason I. Feinberg, Andrew P. Tegnér, Jesper Klareskog, Lars Catrina, Anca I. Ekström, Tomas J. |
author_facet | Gomez-Cabrero, David Almgren, Malin Sjöholm, Louise K. Hensvold, Aase H. Ringh, Mikael V. Tryggvadottir, Rakel Kere, Juha Scheynius, Annika Acevedo, Nathalie Reinius, Lovisa Taub, Margaret A. Montano, Carolina Aryee, Martin J. Feinberg, Jason I. Feinberg, Andrew P. Tegnér, Jesper Klareskog, Lars Catrina, Anca I. Ekström, Tomas J. |
author_sort | Gomez-Cabrero, David |
collection | PubMed |
description | BACKGROUND: Twin studies are powerful models to elucidate epigenetic modifications resulting from gene–environment interactions. Yet, commonly a limited number of clinical twin samples are available, leading to an underpowered situation afflicted with false positives and hampered by low sensitivity. We investigated genome-wide DNA methylation data from two small sets of monozygotic twins representing different phases during the progression of rheumatoid arthritis (RA) to find novel genes for further research. METHODS: We implemented a robust statistical methodology aimed at investigating a small number of samples to identify differential methylation utilizing the comprehensive CHARM platform with whole blood cell DNA from two sets of twin pairs discordant either for ACPA (antibodies to citrullinated protein antigens)-positive RA versus ACPA-negative healthy or for ACPA-positive healthy (a pre-RA stage) versus ACPA-negative healthy. To deconvolute cell type-dependent differential methylation, we assayed the methylation patterns of sorted cells and used computational algorithms to resolve the relative contributions of different cell types and used them as covariates. RESULTS: To identify methylation biomarkers, five healthy twin pairs discordant for ACPAs were profiled, revealing a single differentially methylated region (DMR). Seven twin pairs discordant for ACPA-positive RA revealed six significant DMRs. After deconvolution of cell type proportions, profiling of the healthy ACPA discordant twin-set revealed 17 genome-wide significant DMRs. When methylation profiles of ACPA-positive RA twin pairs were adjusted for cell type, the analysis disclosed one significant DMR, associated with the EXOSC1 gene. Additionally, the results from our methodology suggest a temporal connection of the protocadherine beta-14 gene to ACPA-positivity with clinical RA. CONCLUSIONS: Our biostatistical methodology, optimized for a low-sample twin design, revealed non-genetically linked genes associated with two distinct phases of RA. Functional evidence is still lacking but the results reinforce further study of epigenetic modifications influencing the progression of RA. Our study design and methodology may prove generally useful in twin studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-016-0374-0) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5120506 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-51205062016-11-28 High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis Gomez-Cabrero, David Almgren, Malin Sjöholm, Louise K. Hensvold, Aase H. Ringh, Mikael V. Tryggvadottir, Rakel Kere, Juha Scheynius, Annika Acevedo, Nathalie Reinius, Lovisa Taub, Margaret A. Montano, Carolina Aryee, Martin J. Feinberg, Jason I. Feinberg, Andrew P. Tegnér, Jesper Klareskog, Lars Catrina, Anca I. Ekström, Tomas J. Genome Med Research BACKGROUND: Twin studies are powerful models to elucidate epigenetic modifications resulting from gene–environment interactions. Yet, commonly a limited number of clinical twin samples are available, leading to an underpowered situation afflicted with false positives and hampered by low sensitivity. We investigated genome-wide DNA methylation data from two small sets of monozygotic twins representing different phases during the progression of rheumatoid arthritis (RA) to find novel genes for further research. METHODS: We implemented a robust statistical methodology aimed at investigating a small number of samples to identify differential methylation utilizing the comprehensive CHARM platform with whole blood cell DNA from two sets of twin pairs discordant either for ACPA (antibodies to citrullinated protein antigens)-positive RA versus ACPA-negative healthy or for ACPA-positive healthy (a pre-RA stage) versus ACPA-negative healthy. To deconvolute cell type-dependent differential methylation, we assayed the methylation patterns of sorted cells and used computational algorithms to resolve the relative contributions of different cell types and used them as covariates. RESULTS: To identify methylation biomarkers, five healthy twin pairs discordant for ACPAs were profiled, revealing a single differentially methylated region (DMR). Seven twin pairs discordant for ACPA-positive RA revealed six significant DMRs. After deconvolution of cell type proportions, profiling of the healthy ACPA discordant twin-set revealed 17 genome-wide significant DMRs. When methylation profiles of ACPA-positive RA twin pairs were adjusted for cell type, the analysis disclosed one significant DMR, associated with the EXOSC1 gene. Additionally, the results from our methodology suggest a temporal connection of the protocadherine beta-14 gene to ACPA-positivity with clinical RA. CONCLUSIONS: Our biostatistical methodology, optimized for a low-sample twin design, revealed non-genetically linked genes associated with two distinct phases of RA. Functional evidence is still lacking but the results reinforce further study of epigenetic modifications influencing the progression of RA. Our study design and methodology may prove generally useful in twin studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-016-0374-0) contains supplementary material, which is available to authorized users. BioMed Central 2016-11-22 /pmc/articles/PMC5120506/ /pubmed/27876072 http://dx.doi.org/10.1186/s13073-016-0374-0 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Gomez-Cabrero, David Almgren, Malin Sjöholm, Louise K. Hensvold, Aase H. Ringh, Mikael V. Tryggvadottir, Rakel Kere, Juha Scheynius, Annika Acevedo, Nathalie Reinius, Lovisa Taub, Margaret A. Montano, Carolina Aryee, Martin J. Feinberg, Jason I. Feinberg, Andrew P. Tegnér, Jesper Klareskog, Lars Catrina, Anca I. Ekström, Tomas J. High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis |
title | High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis |
title_full | High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis |
title_fullStr | High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis |
title_full_unstemmed | High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis |
title_short | High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis |
title_sort | high-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for acpa and acpa-positive rheumatoid arthritis |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5120506/ https://www.ncbi.nlm.nih.gov/pubmed/27876072 http://dx.doi.org/10.1186/s13073-016-0374-0 |
work_keys_str_mv | AT gomezcabrerodavid highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT almgrenmalin highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT sjoholmlouisek highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT hensvoldaaseh highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT ringhmikaelv highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT tryggvadottirrakel highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT kerejuha highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT scheyniusannika highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT acevedonathalie highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT reiniuslovisa highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT taubmargareta highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT montanocarolina highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT aryeemartinj highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT feinbergjasoni highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT feinbergandrewp highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT tegnerjesper highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT klareskoglars highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT catrinaancai highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis AT ekstromtomasj highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis |