Cargando…

High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis

BACKGROUND: Twin studies are powerful models to elucidate epigenetic modifications resulting from gene–environment interactions. Yet, commonly a limited number of clinical twin samples are available, leading to an underpowered situation afflicted with false positives and hampered by low sensitivity....

Descripción completa

Detalles Bibliográficos
Autores principales: Gomez-Cabrero, David, Almgren, Malin, Sjöholm, Louise K., Hensvold, Aase H., Ringh, Mikael V., Tryggvadottir, Rakel, Kere, Juha, Scheynius, Annika, Acevedo, Nathalie, Reinius, Lovisa, Taub, Margaret A., Montano, Carolina, Aryee, Martin J., Feinberg, Jason I., Feinberg, Andrew P., Tegnér, Jesper, Klareskog, Lars, Catrina, Anca I., Ekström, Tomas J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5120506/
https://www.ncbi.nlm.nih.gov/pubmed/27876072
http://dx.doi.org/10.1186/s13073-016-0374-0
_version_ 1782469254657867776
author Gomez-Cabrero, David
Almgren, Malin
Sjöholm, Louise K.
Hensvold, Aase H.
Ringh, Mikael V.
Tryggvadottir, Rakel
Kere, Juha
Scheynius, Annika
Acevedo, Nathalie
Reinius, Lovisa
Taub, Margaret A.
Montano, Carolina
Aryee, Martin J.
Feinberg, Jason I.
Feinberg, Andrew P.
Tegnér, Jesper
Klareskog, Lars
Catrina, Anca I.
Ekström, Tomas J.
author_facet Gomez-Cabrero, David
Almgren, Malin
Sjöholm, Louise K.
Hensvold, Aase H.
Ringh, Mikael V.
Tryggvadottir, Rakel
Kere, Juha
Scheynius, Annika
Acevedo, Nathalie
Reinius, Lovisa
Taub, Margaret A.
Montano, Carolina
Aryee, Martin J.
Feinberg, Jason I.
Feinberg, Andrew P.
Tegnér, Jesper
Klareskog, Lars
Catrina, Anca I.
Ekström, Tomas J.
author_sort Gomez-Cabrero, David
collection PubMed
description BACKGROUND: Twin studies are powerful models to elucidate epigenetic modifications resulting from gene–environment interactions. Yet, commonly a limited number of clinical twin samples are available, leading to an underpowered situation afflicted with false positives and hampered by low sensitivity. We investigated genome-wide DNA methylation data from two small sets of monozygotic twins representing different phases during the progression of rheumatoid arthritis (RA) to find novel genes for further research. METHODS: We implemented a robust statistical methodology aimed at investigating a small number of samples to identify differential methylation utilizing the comprehensive CHARM platform with whole blood cell DNA from two sets of twin pairs discordant either for ACPA (antibodies to citrullinated protein antigens)-positive RA versus ACPA-negative healthy or for ACPA-positive healthy (a pre-RA stage) versus ACPA-negative healthy. To deconvolute cell type-dependent differential methylation, we assayed the methylation patterns of sorted cells and used computational algorithms to resolve the relative contributions of different cell types and used them as covariates. RESULTS: To identify methylation biomarkers, five healthy twin pairs discordant for ACPAs were profiled, revealing a single differentially methylated region (DMR). Seven twin pairs discordant for ACPA-positive RA revealed six significant DMRs. After deconvolution of cell type proportions, profiling of the healthy ACPA discordant twin-set revealed 17 genome-wide significant DMRs. When methylation profiles of ACPA-positive RA twin pairs were adjusted for cell type, the analysis disclosed one significant DMR, associated with the EXOSC1 gene. Additionally, the results from our methodology suggest a temporal connection of the protocadherine beta-14 gene to ACPA-positivity with clinical RA. CONCLUSIONS: Our biostatistical methodology, optimized for a low-sample twin design, revealed non-genetically linked genes associated with two distinct phases of RA. Functional evidence is still lacking but the results reinforce further study of epigenetic modifications influencing the progression of RA. Our study design and methodology may prove generally useful in twin studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-016-0374-0) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5120506
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-51205062016-11-28 High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis Gomez-Cabrero, David Almgren, Malin Sjöholm, Louise K. Hensvold, Aase H. Ringh, Mikael V. Tryggvadottir, Rakel Kere, Juha Scheynius, Annika Acevedo, Nathalie Reinius, Lovisa Taub, Margaret A. Montano, Carolina Aryee, Martin J. Feinberg, Jason I. Feinberg, Andrew P. Tegnér, Jesper Klareskog, Lars Catrina, Anca I. Ekström, Tomas J. Genome Med Research BACKGROUND: Twin studies are powerful models to elucidate epigenetic modifications resulting from gene–environment interactions. Yet, commonly a limited number of clinical twin samples are available, leading to an underpowered situation afflicted with false positives and hampered by low sensitivity. We investigated genome-wide DNA methylation data from two small sets of monozygotic twins representing different phases during the progression of rheumatoid arthritis (RA) to find novel genes for further research. METHODS: We implemented a robust statistical methodology aimed at investigating a small number of samples to identify differential methylation utilizing the comprehensive CHARM platform with whole blood cell DNA from two sets of twin pairs discordant either for ACPA (antibodies to citrullinated protein antigens)-positive RA versus ACPA-negative healthy or for ACPA-positive healthy (a pre-RA stage) versus ACPA-negative healthy. To deconvolute cell type-dependent differential methylation, we assayed the methylation patterns of sorted cells and used computational algorithms to resolve the relative contributions of different cell types and used them as covariates. RESULTS: To identify methylation biomarkers, five healthy twin pairs discordant for ACPAs were profiled, revealing a single differentially methylated region (DMR). Seven twin pairs discordant for ACPA-positive RA revealed six significant DMRs. After deconvolution of cell type proportions, profiling of the healthy ACPA discordant twin-set revealed 17 genome-wide significant DMRs. When methylation profiles of ACPA-positive RA twin pairs were adjusted for cell type, the analysis disclosed one significant DMR, associated with the EXOSC1 gene. Additionally, the results from our methodology suggest a temporal connection of the protocadherine beta-14 gene to ACPA-positivity with clinical RA. CONCLUSIONS: Our biostatistical methodology, optimized for a low-sample twin design, revealed non-genetically linked genes associated with two distinct phases of RA. Functional evidence is still lacking but the results reinforce further study of epigenetic modifications influencing the progression of RA. Our study design and methodology may prove generally useful in twin studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-016-0374-0) contains supplementary material, which is available to authorized users. BioMed Central 2016-11-22 /pmc/articles/PMC5120506/ /pubmed/27876072 http://dx.doi.org/10.1186/s13073-016-0374-0 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Gomez-Cabrero, David
Almgren, Malin
Sjöholm, Louise K.
Hensvold, Aase H.
Ringh, Mikael V.
Tryggvadottir, Rakel
Kere, Juha
Scheynius, Annika
Acevedo, Nathalie
Reinius, Lovisa
Taub, Margaret A.
Montano, Carolina
Aryee, Martin J.
Feinberg, Jason I.
Feinberg, Andrew P.
Tegnér, Jesper
Klareskog, Lars
Catrina, Anca I.
Ekström, Tomas J.
High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis
title High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis
title_full High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis
title_fullStr High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis
title_full_unstemmed High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis
title_short High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis
title_sort high-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for acpa and acpa-positive rheumatoid arthritis
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5120506/
https://www.ncbi.nlm.nih.gov/pubmed/27876072
http://dx.doi.org/10.1186/s13073-016-0374-0
work_keys_str_mv AT gomezcabrerodavid highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT almgrenmalin highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT sjoholmlouisek highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT hensvoldaaseh highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT ringhmikaelv highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT tryggvadottirrakel highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT kerejuha highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT scheyniusannika highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT acevedonathalie highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT reiniuslovisa highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT taubmargareta highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT montanocarolina highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT aryeemartinj highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT feinbergjasoni highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT feinbergandrewp highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT tegnerjesper highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT klareskoglars highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT catrinaancai highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis
AT ekstromtomasj highspecificitybioinformaticsframeworkforepigenomicprofilingofdiscordanttwinsrevealsspecificandsharedmarkersforacpaandacpapositiverheumatoidarthritis