Cargando…
Heterophonic speech recognition using composite phones
Heterophones pose challenges during training of automatic speech recognition (ASR) systems because they involve ambiguity in the pronunciation of an orthographic representation of a word. Heterophones are words that have the same spelling but different pronunciations. This paper addresses the proble...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121111/ https://www.ncbi.nlm.nih.gov/pubmed/27933264 http://dx.doi.org/10.1186/s40064-016-3332-9 |
_version_ | 1782469341773561856 |
---|---|
author | Alkhairy, Ashraf Jafri, Afshan |
author_facet | Alkhairy, Ashraf Jafri, Afshan |
author_sort | Alkhairy, Ashraf |
collection | PubMed |
description | Heterophones pose challenges during training of automatic speech recognition (ASR) systems because they involve ambiguity in the pronunciation of an orthographic representation of a word. Heterophones are words that have the same spelling but different pronunciations. This paper addresses the problem of heterophonic languages by developing the concept of a Composite Phoneme (CP) as a basic pronunciation unit for speech recognition. A CP is a set of alternative sequences of phonemes. CP’s are developed specifically in the context of Arabic by defining phonetic units that are consonant centric and absorb phonemically contrastive short vowels and gemination, not represented in the Arabic Modern Orthography (MO). CPs alleviate the need to diacritize MO into Classical Orthography (CO), to represent short vowels and stress, before generating pronunciation in terms of Simple Phonemes (SP). We develop algorithms to generate CP pronunciation from MO, and SP pronunciation from CO to map a word into a single pronunciation. We investigate the performance of CP, SP, UG (Undiacritized Grapheme), and DG (Diacritized Grapheme) ASRs. The experimental results suggest that UG and DG are inferior to SP and CP. For the A-SpeechDB corpus with MO vocabulary of 8000, the WER for bigram and context dependent phone are: 11.78, 12.64, and 13.59 % for CP, SP_M (SP from manual diacritized CO), and SP_A (SP from automated diacritized MO) respectively. For vocabulary of 24,000 MO words, the corresponding WER’s are 13.69, 15.08, and 16.86 %. For uniform statistical model, SP has a lower WER than CP. For context independent phone (CI), CP has lower WER than SP. |
format | Online Article Text |
id | pubmed-5121111 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-51211112016-12-08 Heterophonic speech recognition using composite phones Alkhairy, Ashraf Jafri, Afshan Springerplus Research Heterophones pose challenges during training of automatic speech recognition (ASR) systems because they involve ambiguity in the pronunciation of an orthographic representation of a word. Heterophones are words that have the same spelling but different pronunciations. This paper addresses the problem of heterophonic languages by developing the concept of a Composite Phoneme (CP) as a basic pronunciation unit for speech recognition. A CP is a set of alternative sequences of phonemes. CP’s are developed specifically in the context of Arabic by defining phonetic units that are consonant centric and absorb phonemically contrastive short vowels and gemination, not represented in the Arabic Modern Orthography (MO). CPs alleviate the need to diacritize MO into Classical Orthography (CO), to represent short vowels and stress, before generating pronunciation in terms of Simple Phonemes (SP). We develop algorithms to generate CP pronunciation from MO, and SP pronunciation from CO to map a word into a single pronunciation. We investigate the performance of CP, SP, UG (Undiacritized Grapheme), and DG (Diacritized Grapheme) ASRs. The experimental results suggest that UG and DG are inferior to SP and CP. For the A-SpeechDB corpus with MO vocabulary of 8000, the WER for bigram and context dependent phone are: 11.78, 12.64, and 13.59 % for CP, SP_M (SP from manual diacritized CO), and SP_A (SP from automated diacritized MO) respectively. For vocabulary of 24,000 MO words, the corresponding WER’s are 13.69, 15.08, and 16.86 %. For uniform statistical model, SP has a lower WER than CP. For context independent phone (CI), CP has lower WER than SP. Springer International Publishing 2016-11-24 /pmc/articles/PMC5121111/ /pubmed/27933264 http://dx.doi.org/10.1186/s40064-016-3332-9 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Alkhairy, Ashraf Jafri, Afshan Heterophonic speech recognition using composite phones |
title | Heterophonic speech recognition using composite phones |
title_full | Heterophonic speech recognition using composite phones |
title_fullStr | Heterophonic speech recognition using composite phones |
title_full_unstemmed | Heterophonic speech recognition using composite phones |
title_short | Heterophonic speech recognition using composite phones |
title_sort | heterophonic speech recognition using composite phones |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121111/ https://www.ncbi.nlm.nih.gov/pubmed/27933264 http://dx.doi.org/10.1186/s40064-016-3332-9 |
work_keys_str_mv | AT alkhairyashraf heterophonicspeechrecognitionusingcompositephones AT jafriafshan heterophonicspeechrecognitionusingcompositephones |