Cargando…
Manifold regularization for sparse unmixing of hyperspectral images
BACKGROUND: Recently, sparse unmixing has been successfully applied to spectral mixture analysis of remotely sensed hyperspectral images. Based on the assumption that the observed image signatures can be expressed in the form of linear combinations of a number of pure spectral signatures known in ad...
Autores principales: | Liu, Junmin, Zhang, Chunxia, Zhang, Jiangshe, Li, Huirong, Gao, Yuelin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121117/ https://www.ncbi.nlm.nih.gov/pubmed/27933263 http://dx.doi.org/10.1186/s40064-016-3671-6 |
Ejemplares similares
-
Non-Negative Matrix Factorization Based on Smoothing and Sparse Constraints for Hyperspectral Unmixing
por: Jia, Xiangxiang, et al.
Publicado: (2022) -
Distributed Compressed Hyperspectral Sensing Imaging Based on Spectral Unmixing
por: Wang, Zhongliang, et al.
Publicado: (2020) -
Tissue Classification of Breast Cancer by Hyperspectral Unmixing
por: Jong, Lynn-Jade S., et al.
Publicado: (2023) -
Unmixing Biological Fluorescence Image Data with Sparse and Low-Rank Poisson Regression
por: Wang, Ruogu, et al.
Publicado: (2023) -
Unmixing biological fluorescence image data with sparse and low-rank Poisson regression
por: Wang, Ruogu, et al.
Publicado: (2023)