Cargando…
One-carbon cycle alterations induced by Dyrk1a dosage
Hyperhomocysteinemia due to cystathionine beta synthase deficiency confers diverse clinical manifestations. It is characterized by elevated plasma homocysteine levels, a common amino acid metabolized by remethylation to methionine or transsulfuration to cysteine. We recently found a relationship bet...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121348/ https://www.ncbi.nlm.nih.gov/pubmed/27896129 http://dx.doi.org/10.1016/j.ymgmr.2014.11.004 |
Sumario: | Hyperhomocysteinemia due to cystathionine beta synthase deficiency confers diverse clinical manifestations. It is characterized by elevated plasma homocysteine levels, a common amino acid metabolized by remethylation to methionine or transsulfuration to cysteine. We recently found a relationship between hepatic Dyrk1A protein expression, a serine/threonine kinase involved in signal transduction in biological processes, hepatic S-adenosylhomocysteine activity, and plasma homocysteine levels. We aimed to study whether there is also a relationship between Dyrk1a and cystathionine beta synthase activity. We used different murine models carrying altered gene coy numbers for Dyrk1a, and found a decreased cystathionine beta synthase activity in the liver of mice under-expressing Dyrk1a, and an increased in liver of mice over-expressing Dyrk1a. For each model, a positive correlation was found between cystathionine beta synthase activity and Dyrk1a protein expression in the liver of mice, which was confirmed in a non-modified genetic context. The positive correlation found between liver Dyrk1a protein expression and CBS activity in modified and non-modified genetic context strengthens the role of this kinase in one carbon metabolism. |
---|