Cargando…
The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch
Hepatic gluconeogenesis during fasting results from gluconeogenic gene activation via the glucagon–cAMP–protein kinase A (PKA) pathway, a process whose dysregulation underlies fasting hyperglycemia in diabetes. Such transcriptional activation requires epigenetic changes at promoters by mechanisms th...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121418/ https://www.ncbi.nlm.nih.gov/pubmed/27874008 http://dx.doi.org/10.1038/ncomms13147 |
_version_ | 1782469400040833024 |
---|---|
author | Sakai, Mashito Tujimura-Hayakawa, Tomoko Yagi, Takashi Yano, Hiroyuki Mitsushima, Masaru Unoki-Kubota, Hiroyuki Kaburagi, Yasushi Inoue, Hiroshi Kido, Yoshiaki Kasuga, Masato Matsumoto, Michihiro |
author_facet | Sakai, Mashito Tujimura-Hayakawa, Tomoko Yagi, Takashi Yano, Hiroyuki Mitsushima, Masaru Unoki-Kubota, Hiroyuki Kaburagi, Yasushi Inoue, Hiroshi Kido, Yoshiaki Kasuga, Masato Matsumoto, Michihiro |
author_sort | Sakai, Mashito |
collection | PubMed |
description | Hepatic gluconeogenesis during fasting results from gluconeogenic gene activation via the glucagon–cAMP–protein kinase A (PKA) pathway, a process whose dysregulation underlies fasting hyperglycemia in diabetes. Such transcriptional activation requires epigenetic changes at promoters by mechanisms that have remained unclear. Here we show that GCN5 functions both as a histone acetyltransferase (HAT) to activate fasting gluconeogenesis and as an acetyltransferase for the transcriptional co-activator PGC-1α to inhibit gluconeogenesis in the fed state. During fasting, PKA phosphorylates GCN5 in a manner dependent on the transcriptional coregulator CITED2, thereby increasing its acetyltransferase activity for histone and attenuating that for PGC-1α. This substrate switch concomitantly promotes both epigenetic changes associated with transcriptional activation and PGC-1α–mediated coactivation, thereby triggering gluconeogenesis. The GCN5-CITED2-PKA signalling module and associated GCN5 substrate switch thus serve as a key driver of gluconeogenesis. Disruption of this module ameliorates hyperglycemia in obese diabetic animals, offering a potential therapeutic strategy for such conditions. |
format | Online Article Text |
id | pubmed-5121418 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-51214182016-12-02 The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch Sakai, Mashito Tujimura-Hayakawa, Tomoko Yagi, Takashi Yano, Hiroyuki Mitsushima, Masaru Unoki-Kubota, Hiroyuki Kaburagi, Yasushi Inoue, Hiroshi Kido, Yoshiaki Kasuga, Masato Matsumoto, Michihiro Nat Commun Article Hepatic gluconeogenesis during fasting results from gluconeogenic gene activation via the glucagon–cAMP–protein kinase A (PKA) pathway, a process whose dysregulation underlies fasting hyperglycemia in diabetes. Such transcriptional activation requires epigenetic changes at promoters by mechanisms that have remained unclear. Here we show that GCN5 functions both as a histone acetyltransferase (HAT) to activate fasting gluconeogenesis and as an acetyltransferase for the transcriptional co-activator PGC-1α to inhibit gluconeogenesis in the fed state. During fasting, PKA phosphorylates GCN5 in a manner dependent on the transcriptional coregulator CITED2, thereby increasing its acetyltransferase activity for histone and attenuating that for PGC-1α. This substrate switch concomitantly promotes both epigenetic changes associated with transcriptional activation and PGC-1α–mediated coactivation, thereby triggering gluconeogenesis. The GCN5-CITED2-PKA signalling module and associated GCN5 substrate switch thus serve as a key driver of gluconeogenesis. Disruption of this module ameliorates hyperglycemia in obese diabetic animals, offering a potential therapeutic strategy for such conditions. Nature Publishing Group 2016-11-22 /pmc/articles/PMC5121418/ /pubmed/27874008 http://dx.doi.org/10.1038/ncomms13147 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Sakai, Mashito Tujimura-Hayakawa, Tomoko Yagi, Takashi Yano, Hiroyuki Mitsushima, Masaru Unoki-Kubota, Hiroyuki Kaburagi, Yasushi Inoue, Hiroshi Kido, Yoshiaki Kasuga, Masato Matsumoto, Michihiro The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch |
title | The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch |
title_full | The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch |
title_fullStr | The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch |
title_full_unstemmed | The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch |
title_short | The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch |
title_sort | gcn5-cited2-pka signalling module controls hepatic glucose metabolism through a camp-induced substrate switch |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121418/ https://www.ncbi.nlm.nih.gov/pubmed/27874008 http://dx.doi.org/10.1038/ncomms13147 |
work_keys_str_mv | AT sakaimashito thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT tujimurahayakawatomoko thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT yagitakashi thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT yanohiroyuki thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT mitsushimamasaru thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT unokikubotahiroyuki thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT kaburagiyasushi thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT inouehiroshi thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT kidoyoshiaki thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT kasugamasato thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT matsumotomichihiro thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT sakaimashito gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT tujimurahayakawatomoko gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT yagitakashi gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT yanohiroyuki gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT mitsushimamasaru gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT unokikubotahiroyuki gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT kaburagiyasushi gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT inouehiroshi gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT kidoyoshiaki gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT kasugamasato gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch AT matsumotomichihiro gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch |