Cargando…

The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch

Hepatic gluconeogenesis during fasting results from gluconeogenic gene activation via the glucagon–cAMP–protein kinase A (PKA) pathway, a process whose dysregulation underlies fasting hyperglycemia in diabetes. Such transcriptional activation requires epigenetic changes at promoters by mechanisms th...

Descripción completa

Detalles Bibliográficos
Autores principales: Sakai, Mashito, Tujimura-Hayakawa, Tomoko, Yagi, Takashi, Yano, Hiroyuki, Mitsushima, Masaru, Unoki-Kubota, Hiroyuki, Kaburagi, Yasushi, Inoue, Hiroshi, Kido, Yoshiaki, Kasuga, Masato, Matsumoto, Michihiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121418/
https://www.ncbi.nlm.nih.gov/pubmed/27874008
http://dx.doi.org/10.1038/ncomms13147
_version_ 1782469400040833024
author Sakai, Mashito
Tujimura-Hayakawa, Tomoko
Yagi, Takashi
Yano, Hiroyuki
Mitsushima, Masaru
Unoki-Kubota, Hiroyuki
Kaburagi, Yasushi
Inoue, Hiroshi
Kido, Yoshiaki
Kasuga, Masato
Matsumoto, Michihiro
author_facet Sakai, Mashito
Tujimura-Hayakawa, Tomoko
Yagi, Takashi
Yano, Hiroyuki
Mitsushima, Masaru
Unoki-Kubota, Hiroyuki
Kaburagi, Yasushi
Inoue, Hiroshi
Kido, Yoshiaki
Kasuga, Masato
Matsumoto, Michihiro
author_sort Sakai, Mashito
collection PubMed
description Hepatic gluconeogenesis during fasting results from gluconeogenic gene activation via the glucagon–cAMP–protein kinase A (PKA) pathway, a process whose dysregulation underlies fasting hyperglycemia in diabetes. Such transcriptional activation requires epigenetic changes at promoters by mechanisms that have remained unclear. Here we show that GCN5 functions both as a histone acetyltransferase (HAT) to activate fasting gluconeogenesis and as an acetyltransferase for the transcriptional co-activator PGC-1α to inhibit gluconeogenesis in the fed state. During fasting, PKA phosphorylates GCN5 in a manner dependent on the transcriptional coregulator CITED2, thereby increasing its acetyltransferase activity for histone and attenuating that for PGC-1α. This substrate switch concomitantly promotes both epigenetic changes associated with transcriptional activation and PGC-1α–mediated coactivation, thereby triggering gluconeogenesis. The GCN5-CITED2-PKA signalling module and associated GCN5 substrate switch thus serve as a key driver of gluconeogenesis. Disruption of this module ameliorates hyperglycemia in obese diabetic animals, offering a potential therapeutic strategy for such conditions.
format Online
Article
Text
id pubmed-5121418
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-51214182016-12-02 The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch Sakai, Mashito Tujimura-Hayakawa, Tomoko Yagi, Takashi Yano, Hiroyuki Mitsushima, Masaru Unoki-Kubota, Hiroyuki Kaburagi, Yasushi Inoue, Hiroshi Kido, Yoshiaki Kasuga, Masato Matsumoto, Michihiro Nat Commun Article Hepatic gluconeogenesis during fasting results from gluconeogenic gene activation via the glucagon–cAMP–protein kinase A (PKA) pathway, a process whose dysregulation underlies fasting hyperglycemia in diabetes. Such transcriptional activation requires epigenetic changes at promoters by mechanisms that have remained unclear. Here we show that GCN5 functions both as a histone acetyltransferase (HAT) to activate fasting gluconeogenesis and as an acetyltransferase for the transcriptional co-activator PGC-1α to inhibit gluconeogenesis in the fed state. During fasting, PKA phosphorylates GCN5 in a manner dependent on the transcriptional coregulator CITED2, thereby increasing its acetyltransferase activity for histone and attenuating that for PGC-1α. This substrate switch concomitantly promotes both epigenetic changes associated with transcriptional activation and PGC-1α–mediated coactivation, thereby triggering gluconeogenesis. The GCN5-CITED2-PKA signalling module and associated GCN5 substrate switch thus serve as a key driver of gluconeogenesis. Disruption of this module ameliorates hyperglycemia in obese diabetic animals, offering a potential therapeutic strategy for such conditions. Nature Publishing Group 2016-11-22 /pmc/articles/PMC5121418/ /pubmed/27874008 http://dx.doi.org/10.1038/ncomms13147 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Sakai, Mashito
Tujimura-Hayakawa, Tomoko
Yagi, Takashi
Yano, Hiroyuki
Mitsushima, Masaru
Unoki-Kubota, Hiroyuki
Kaburagi, Yasushi
Inoue, Hiroshi
Kido, Yoshiaki
Kasuga, Masato
Matsumoto, Michihiro
The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch
title The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch
title_full The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch
title_fullStr The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch
title_full_unstemmed The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch
title_short The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch
title_sort gcn5-cited2-pka signalling module controls hepatic glucose metabolism through a camp-induced substrate switch
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121418/
https://www.ncbi.nlm.nih.gov/pubmed/27874008
http://dx.doi.org/10.1038/ncomms13147
work_keys_str_mv AT sakaimashito thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT tujimurahayakawatomoko thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT yagitakashi thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT yanohiroyuki thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT mitsushimamasaru thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT unokikubotahiroyuki thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT kaburagiyasushi thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT inouehiroshi thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT kidoyoshiaki thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT kasugamasato thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT matsumotomichihiro thegcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT sakaimashito gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT tujimurahayakawatomoko gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT yagitakashi gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT yanohiroyuki gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT mitsushimamasaru gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT unokikubotahiroyuki gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT kaburagiyasushi gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT inouehiroshi gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT kidoyoshiaki gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT kasugamasato gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch
AT matsumotomichihiro gcn5cited2pkasignallingmodulecontrolshepaticglucosemetabolismthroughacampinducedsubstrateswitch