Cargando…

Dosimetric impact of intermediate dose calculation for optimization convergence error

Intensity-modulated radiation therapy (IMRT) provides the protection of the normal organs and a precise treatment plan through its optimization process. However, the final dose-volume histogram (DVH) obtained by this technique differs from the optimal DVH, owing to optimization convergence errors. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Byung Do, Kim, Tae Gyu, Kim, Jong Eon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5122334/
https://www.ncbi.nlm.nih.gov/pubmed/26933998
http://dx.doi.org/10.18632/oncotarget.7743
Descripción
Sumario:Intensity-modulated radiation therapy (IMRT) provides the protection of the normal organs and a precise treatment plan through its optimization process. However, the final dose-volume histogram (DVH) obtained by this technique differs from the optimal DVH, owing to optimization convergence errors. Herein, intermediate dose calculation was applied to IMRT plans during the optimization process to solve these issues. Homogeneous and heterogeneous targets were delineated on a virtual phantom, and the final DVH for the target volume was assessed on the target coverage. The IMRT plans of 30 patients were established to evaluate the usefulness of intermediate dose calculation. The target coverage results were analogous in the three plans with homogeneous targets. Conversely, conformity indices (conformity index [CI], heterogeneity index [HI], and uniformity index [UI]) of plans with intermediate dose calculation were estimated to be more homogenous than plans without this option for heterogeneous targets (CI, 0.371 vs. 1.000; HI, 0.104 vs. 0.036; UI, 1.099 vs. 1.031 for Phantom B; and CI, 0.318 vs. 0.956; HI, 0.167 vs. 0.076; UI, 1.165 vs. 1.057 for Phantom C). In brain and prostate cancers, a slight difference between plans calculated with anisotropic analytical algorithm (AAA) was observed (HI, p = 0.043, UI, p = 0.043 for brain; HI, p = 0.042, UI, p = 0.043 for prostate). All target coverage indices were improved by intermediate dose calculation in lung cancer cases (p = 0.043). In conclusion, intermediate dose calculation in IMRT plans improves the target coverage in the target volume around heterogeneous materials. Moreover, the optimization time can be reduced.