Cargando…

Validation of a multi-omics strategy for prioritizing personalized candidate driver genes

Significant heterogeneity between different tumors prevents the discovery of cancer driver genes, especially in a patient-specific manner. We previously prioritized five personalized candidate mutation-driver genes in a hyper-mutated hepatocellular carcinoma patient using a multi-omics strategy. How...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Li, Song, Liting, Yang, Yi, Tian, Ling, Li, Xiaoyuan, Wu, Songfeng, Huang, Wenxun, Ren, Hong, Tang, Ni, Ding, Keyue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5122402/
https://www.ncbi.nlm.nih.gov/pubmed/27469031
http://dx.doi.org/10.18632/oncotarget.9540
Descripción
Sumario:Significant heterogeneity between different tumors prevents the discovery of cancer driver genes, especially in a patient-specific manner. We previously prioritized five personalized candidate mutation-driver genes in a hyper-mutated hepatocellular carcinoma patient using a multi-omics strategy. However, the roles of the prioritized driver genes and patient-specific mutations in hepatocarcinogenesis are unclear. We investigated the impact of the tumor-mutated allele on structure-function relationship of the encoded protein and assessed both loss- and gain-of-function of these genes and mutations on hepatoma cell behaviors in vitro. The prioritized mutation-driver genes act as tumor suppressor genes and inhibit cell proliferation and migration. In addition, the loss-of-function effect of the patient-specific mutations promoted cell proliferation and migration. Of note, the HNF1A S247T mutation significantly reduced the HNF1A transcriptional activity for hepatocyte nuclear factor 4 alpha (HNF4A) but did not disrupt nuclear localization of HNF1A. The results provide evidence for supporting the validity of our proposed multi-omics strategy, which supplies a new avenue for prioritizing mutation-drivers towards personalized cancer therapy.