Cargando…
A Review of Modeling Approaches to Predict Drug Response in Clinical Oncology
Model-based approaches have emerged as important tools for quantitatively understanding temporal relationships between drug dose, concentration, and effect over the course of treatment, and have now become central to optimal drug development and tailored drug treatment. In oncology, the therapeutic...
Autor principal: | Park, Kyungsoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Yonsei University College of Medicine
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5122624/ https://www.ncbi.nlm.nih.gov/pubmed/27873489 http://dx.doi.org/10.3349/ymj.2017.58.1.1 |
Ejemplares similares
-
A review of computational drug repurposing
por: Park, Kyungsoo
Publicado: (2019) -
The use of real-world data in drug repurposing
por: Park, Kyungsoo
Publicado: (2021) -
Population pharmacokinetic–pharmacodynamic modelling in oncology: a tool for predicting clinical response
por: Bender, Brendan C, et al.
Publicado: (2015) -
Evolution of Antiretroviral Drug Rilpivirine and Approach to Oncology
por: Pereira, Mariana, et al.
Publicado: (2023) -
Machine learning and feature selection for drug response prediction in precision oncology applications
por: Ali, Mehreen, et al.
Publicado: (2018)