Cargando…

Boosting photoresponse in silicon metal-semiconductor-metal photodetector using semiconducting quantum dots

Silicon based metal-semiconductor-metal (MSM) photodetectors have faster photogeneration and carrier collection across the metal-semiconductor Schottky contacts, and CMOS integratibility compared to conventional p-n junction photodetectors. However, its operations are limited by low photogeneration,...

Descripción completa

Detalles Bibliográficos
Autores principales: Biswas, Chandan, Kim, Yonghwan, Lee, Young Hee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5122951/
https://www.ncbi.nlm.nih.gov/pubmed/27886274
http://dx.doi.org/10.1038/srep37857
Descripción
Sumario:Silicon based metal-semiconductor-metal (MSM) photodetectors have faster photogeneration and carrier collection across the metal-semiconductor Schottky contacts, and CMOS integratibility compared to conventional p-n junction photodetectors. However, its operations are limited by low photogeneration, inefficient carrier-separation, and low mobility. Here, we show a simple and highly effective approach for boosting Si MSM photodetector efficiency by uniformly decorating semiconducting CdSe quantum dots on Si channel (Si-QD). Significantly higher photocurrent on/off ratio was achieved up to over 500 compared to conventional Si MSM photodetector (on/off ratio ~5) by increasing photogeneration and improving carrier separation. Furthermore, a substrate-biasing technique invoked wide range of tunable photocurrent on/off ratio in Si-QD photodetector (ranging from 2.7 to 562) by applying suitable combinations of source-drain and substrate biasing conditions. Strong photogeneration and carrier separation were achieved by employing Stark effect into the Si-QD hybrid system. These results highlight a promising method for enhancing Si MSM photodetector efficiency more than 100 times and simultaneously compatible with current silicon technologies.