Cargando…
Boosting photoresponse in silicon metal-semiconductor-metal photodetector using semiconducting quantum dots
Silicon based metal-semiconductor-metal (MSM) photodetectors have faster photogeneration and carrier collection across the metal-semiconductor Schottky contacts, and CMOS integratibility compared to conventional p-n junction photodetectors. However, its operations are limited by low photogeneration,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5122951/ https://www.ncbi.nlm.nih.gov/pubmed/27886274 http://dx.doi.org/10.1038/srep37857 |
Sumario: | Silicon based metal-semiconductor-metal (MSM) photodetectors have faster photogeneration and carrier collection across the metal-semiconductor Schottky contacts, and CMOS integratibility compared to conventional p-n junction photodetectors. However, its operations are limited by low photogeneration, inefficient carrier-separation, and low mobility. Here, we show a simple and highly effective approach for boosting Si MSM photodetector efficiency by uniformly decorating semiconducting CdSe quantum dots on Si channel (Si-QD). Significantly higher photocurrent on/off ratio was achieved up to over 500 compared to conventional Si MSM photodetector (on/off ratio ~5) by increasing photogeneration and improving carrier separation. Furthermore, a substrate-biasing technique invoked wide range of tunable photocurrent on/off ratio in Si-QD photodetector (ranging from 2.7 to 562) by applying suitable combinations of source-drain and substrate biasing conditions. Strong photogeneration and carrier separation were achieved by employing Stark effect into the Si-QD hybrid system. These results highlight a promising method for enhancing Si MSM photodetector efficiency more than 100 times and simultaneously compatible with current silicon technologies. |
---|