Cargando…
A CMOS silicon spin qubit
Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal–oxide–semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computi...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123048/ https://www.ncbi.nlm.nih.gov/pubmed/27882926 http://dx.doi.org/10.1038/ncomms13575 |
_version_ | 1782469676699222016 |
---|---|
author | Maurand, R. Jehl, X. Kotekar-Patil, D. Corna, A. Bohuslavskyi, H. Laviéville, R. Hutin, L. Barraud, S. Vinet, M. Sanquer, M. De Franceschi, S. |
author_facet | Maurand, R. Jehl, X. Kotekar-Patil, D. Corna, A. Bohuslavskyi, H. Laviéville, R. Hutin, L. Barraud, S. Vinet, M. Sanquer, M. De Franceschi, S. |
author_sort | Maurand, R. |
collection | PubMed |
description | Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal–oxide–semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform. |
format | Online Article Text |
id | pubmed-5123048 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-51230482016-11-29 A CMOS silicon spin qubit Maurand, R. Jehl, X. Kotekar-Patil, D. Corna, A. Bohuslavskyi, H. Laviéville, R. Hutin, L. Barraud, S. Vinet, M. Sanquer, M. De Franceschi, S. Nat Commun Article Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal–oxide–semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform. Nature Publishing Group 2016-11-24 /pmc/articles/PMC5123048/ /pubmed/27882926 http://dx.doi.org/10.1038/ncomms13575 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Maurand, R. Jehl, X. Kotekar-Patil, D. Corna, A. Bohuslavskyi, H. Laviéville, R. Hutin, L. Barraud, S. Vinet, M. Sanquer, M. De Franceschi, S. A CMOS silicon spin qubit |
title | A CMOS silicon spin qubit |
title_full | A CMOS silicon spin qubit |
title_fullStr | A CMOS silicon spin qubit |
title_full_unstemmed | A CMOS silicon spin qubit |
title_short | A CMOS silicon spin qubit |
title_sort | cmos silicon spin qubit |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123048/ https://www.ncbi.nlm.nih.gov/pubmed/27882926 http://dx.doi.org/10.1038/ncomms13575 |
work_keys_str_mv | AT maurandr acmossiliconspinqubit AT jehlx acmossiliconspinqubit AT kotekarpatild acmossiliconspinqubit AT cornaa acmossiliconspinqubit AT bohuslavskyih acmossiliconspinqubit AT lavieviller acmossiliconspinqubit AT hutinl acmossiliconspinqubit AT barrauds acmossiliconspinqubit AT vinetm acmossiliconspinqubit AT sanquerm acmossiliconspinqubit AT defranceschis acmossiliconspinqubit AT maurandr cmossiliconspinqubit AT jehlx cmossiliconspinqubit AT kotekarpatild cmossiliconspinqubit AT cornaa cmossiliconspinqubit AT bohuslavskyih cmossiliconspinqubit AT lavieviller cmossiliconspinqubit AT hutinl cmossiliconspinqubit AT barrauds cmossiliconspinqubit AT vinetm cmossiliconspinqubit AT sanquerm cmossiliconspinqubit AT defranceschis cmossiliconspinqubit |