Cargando…

A CMOS silicon spin qubit

Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal–oxide–semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computi...

Descripción completa

Detalles Bibliográficos
Autores principales: Maurand, R., Jehl, X., Kotekar-Patil, D., Corna, A., Bohuslavskyi, H., Laviéville, R., Hutin, L., Barraud, S., Vinet, M., Sanquer, M., De Franceschi, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123048/
https://www.ncbi.nlm.nih.gov/pubmed/27882926
http://dx.doi.org/10.1038/ncomms13575
_version_ 1782469676699222016
author Maurand, R.
Jehl, X.
Kotekar-Patil, D.
Corna, A.
Bohuslavskyi, H.
Laviéville, R.
Hutin, L.
Barraud, S.
Vinet, M.
Sanquer, M.
De Franceschi, S.
author_facet Maurand, R.
Jehl, X.
Kotekar-Patil, D.
Corna, A.
Bohuslavskyi, H.
Laviéville, R.
Hutin, L.
Barraud, S.
Vinet, M.
Sanquer, M.
De Franceschi, S.
author_sort Maurand, R.
collection PubMed
description Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal–oxide–semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.
format Online
Article
Text
id pubmed-5123048
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-51230482016-11-29 A CMOS silicon spin qubit Maurand, R. Jehl, X. Kotekar-Patil, D. Corna, A. Bohuslavskyi, H. Laviéville, R. Hutin, L. Barraud, S. Vinet, M. Sanquer, M. De Franceschi, S. Nat Commun Article Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal–oxide–semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform. Nature Publishing Group 2016-11-24 /pmc/articles/PMC5123048/ /pubmed/27882926 http://dx.doi.org/10.1038/ncomms13575 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Maurand, R.
Jehl, X.
Kotekar-Patil, D.
Corna, A.
Bohuslavskyi, H.
Laviéville, R.
Hutin, L.
Barraud, S.
Vinet, M.
Sanquer, M.
De Franceschi, S.
A CMOS silicon spin qubit
title A CMOS silicon spin qubit
title_full A CMOS silicon spin qubit
title_fullStr A CMOS silicon spin qubit
title_full_unstemmed A CMOS silicon spin qubit
title_short A CMOS silicon spin qubit
title_sort cmos silicon spin qubit
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123048/
https://www.ncbi.nlm.nih.gov/pubmed/27882926
http://dx.doi.org/10.1038/ncomms13575
work_keys_str_mv AT maurandr acmossiliconspinqubit
AT jehlx acmossiliconspinqubit
AT kotekarpatild acmossiliconspinqubit
AT cornaa acmossiliconspinqubit
AT bohuslavskyih acmossiliconspinqubit
AT lavieviller acmossiliconspinqubit
AT hutinl acmossiliconspinqubit
AT barrauds acmossiliconspinqubit
AT vinetm acmossiliconspinqubit
AT sanquerm acmossiliconspinqubit
AT defranceschis acmossiliconspinqubit
AT maurandr cmossiliconspinqubit
AT jehlx cmossiliconspinqubit
AT kotekarpatild cmossiliconspinqubit
AT cornaa cmossiliconspinqubit
AT bohuslavskyih cmossiliconspinqubit
AT lavieviller cmossiliconspinqubit
AT hutinl cmossiliconspinqubit
AT barrauds cmossiliconspinqubit
AT vinetm cmossiliconspinqubit
AT sanquerm cmossiliconspinqubit
AT defranceschis cmossiliconspinqubit