Cargando…

A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors

We report a simple synthetic approach to coaxially grow transition metal oxide (TMO) nanostructures on carbon nanotubes (CNT) with ready control of phase and morphology. A thin (~4 nm) sulfonated-polystyrene (SPS) pre-coating is essential for the deposition of transition metal based materials. This...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Han, Zhang, Lusi, Zhang, Dongyang, Chen, Shuangqiang, Coxon, Paul R., He, Xiong, Coto, Mike, Kim, Hyun-Kyung, Xi, Kai, Ding, Shujiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123580/
https://www.ncbi.nlm.nih.gov/pubmed/27886231
http://dx.doi.org/10.1038/srep37752
_version_ 1782469763205693440
author Zhou, Han
Zhang, Lusi
Zhang, Dongyang
Chen, Shuangqiang
Coxon, Paul R.
He, Xiong
Coto, Mike
Kim, Hyun-Kyung
Xi, Kai
Ding, Shujiang
author_facet Zhou, Han
Zhang, Lusi
Zhang, Dongyang
Chen, Shuangqiang
Coxon, Paul R.
He, Xiong
Coto, Mike
Kim, Hyun-Kyung
Xi, Kai
Ding, Shujiang
author_sort Zhou, Han
collection PubMed
description We report a simple synthetic approach to coaxially grow transition metal oxide (TMO) nanostructures on carbon nanotubes (CNT) with ready control of phase and morphology. A thin (~4 nm) sulfonated-polystyrene (SPS) pre-coating is essential for the deposition of transition metal based materials. This layer has abundant sulfonic groups (−SO(3)(−)) that can effectively attract Ni(2+), Co(2+), Zn(2+) ions through electrostatic interaction and induce them via hydrolysis, dehydration and recrystallization to form coaxial (NiO, Co(3)O(4), NiCoO(2) and ZnCo(2)O(4)) shells and a nanosheet-like morphology around CNT. These structures possess a large active surface and enhanced structural robustness when used as electrode materials for lithium-ion batteries (LIBs) and electrochemical capacitors (ECs). As electrodes for LIBs, the ZnCo(2)O(4)@CNT material shows extremely stable cycling performance with a discharge capacity of 1068 mAh g(−1) after 100 cycles at a current density of 400 mAg(−1). For EC applications, the NiCoO(2)@CNT exhibits a high capacitance of 1360 Fg(−1) at current densities of 10 Ag(−1) after 3000 cycles and an overall capacitance loss of only 1.4%. These results demonstrate the potential of such hybrid materials meeting the crucial requirements of cycling stability and high rate capability for energy conversion and storage devices.
format Online
Article
Text
id pubmed-5123580
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-51235802016-12-07 A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors Zhou, Han Zhang, Lusi Zhang, Dongyang Chen, Shuangqiang Coxon, Paul R. He, Xiong Coto, Mike Kim, Hyun-Kyung Xi, Kai Ding, Shujiang Sci Rep Article We report a simple synthetic approach to coaxially grow transition metal oxide (TMO) nanostructures on carbon nanotubes (CNT) with ready control of phase and morphology. A thin (~4 nm) sulfonated-polystyrene (SPS) pre-coating is essential for the deposition of transition metal based materials. This layer has abundant sulfonic groups (−SO(3)(−)) that can effectively attract Ni(2+), Co(2+), Zn(2+) ions through electrostatic interaction and induce them via hydrolysis, dehydration and recrystallization to form coaxial (NiO, Co(3)O(4), NiCoO(2) and ZnCo(2)O(4)) shells and a nanosheet-like morphology around CNT. These structures possess a large active surface and enhanced structural robustness when used as electrode materials for lithium-ion batteries (LIBs) and electrochemical capacitors (ECs). As electrodes for LIBs, the ZnCo(2)O(4)@CNT material shows extremely stable cycling performance with a discharge capacity of 1068 mAh g(−1) after 100 cycles at a current density of 400 mAg(−1). For EC applications, the NiCoO(2)@CNT exhibits a high capacitance of 1360 Fg(−1) at current densities of 10 Ag(−1) after 3000 cycles and an overall capacitance loss of only 1.4%. These results demonstrate the potential of such hybrid materials meeting the crucial requirements of cycling stability and high rate capability for energy conversion and storage devices. Nature Publishing Group 2016-11-25 /pmc/articles/PMC5123580/ /pubmed/27886231 http://dx.doi.org/10.1038/srep37752 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Zhou, Han
Zhang, Lusi
Zhang, Dongyang
Chen, Shuangqiang
Coxon, Paul R.
He, Xiong
Coto, Mike
Kim, Hyun-Kyung
Xi, Kai
Ding, Shujiang
A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors
title A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors
title_full A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors
title_fullStr A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors
title_full_unstemmed A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors
title_short A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors
title_sort universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123580/
https://www.ncbi.nlm.nih.gov/pubmed/27886231
http://dx.doi.org/10.1038/srep37752
work_keys_str_mv AT zhouhan auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT zhanglusi auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT zhangdongyang auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT chenshuangqiang auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT coxonpaulr auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT hexiong auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT cotomike auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT kimhyunkyung auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT xikai auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT dingshujiang auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT zhouhan universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT zhanglusi universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT zhangdongyang universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT chenshuangqiang universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT coxonpaulr universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT hexiong universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT cotomike universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT kimhyunkyung universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT xikai universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors
AT dingshujiang universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors