Cargando…
A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors
We report a simple synthetic approach to coaxially grow transition metal oxide (TMO) nanostructures on carbon nanotubes (CNT) with ready control of phase and morphology. A thin (~4 nm) sulfonated-polystyrene (SPS) pre-coating is essential for the deposition of transition metal based materials. This...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123580/ https://www.ncbi.nlm.nih.gov/pubmed/27886231 http://dx.doi.org/10.1038/srep37752 |
_version_ | 1782469763205693440 |
---|---|
author | Zhou, Han Zhang, Lusi Zhang, Dongyang Chen, Shuangqiang Coxon, Paul R. He, Xiong Coto, Mike Kim, Hyun-Kyung Xi, Kai Ding, Shujiang |
author_facet | Zhou, Han Zhang, Lusi Zhang, Dongyang Chen, Shuangqiang Coxon, Paul R. He, Xiong Coto, Mike Kim, Hyun-Kyung Xi, Kai Ding, Shujiang |
author_sort | Zhou, Han |
collection | PubMed |
description | We report a simple synthetic approach to coaxially grow transition metal oxide (TMO) nanostructures on carbon nanotubes (CNT) with ready control of phase and morphology. A thin (~4 nm) sulfonated-polystyrene (SPS) pre-coating is essential for the deposition of transition metal based materials. This layer has abundant sulfonic groups (−SO(3)(−)) that can effectively attract Ni(2+), Co(2+), Zn(2+) ions through electrostatic interaction and induce them via hydrolysis, dehydration and recrystallization to form coaxial (NiO, Co(3)O(4), NiCoO(2) and ZnCo(2)O(4)) shells and a nanosheet-like morphology around CNT. These structures possess a large active surface and enhanced structural robustness when used as electrode materials for lithium-ion batteries (LIBs) and electrochemical capacitors (ECs). As electrodes for LIBs, the ZnCo(2)O(4)@CNT material shows extremely stable cycling performance with a discharge capacity of 1068 mAh g(−1) after 100 cycles at a current density of 400 mAg(−1). For EC applications, the NiCoO(2)@CNT exhibits a high capacitance of 1360 Fg(−1) at current densities of 10 Ag(−1) after 3000 cycles and an overall capacitance loss of only 1.4%. These results demonstrate the potential of such hybrid materials meeting the crucial requirements of cycling stability and high rate capability for energy conversion and storage devices. |
format | Online Article Text |
id | pubmed-5123580 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-51235802016-12-07 A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors Zhou, Han Zhang, Lusi Zhang, Dongyang Chen, Shuangqiang Coxon, Paul R. He, Xiong Coto, Mike Kim, Hyun-Kyung Xi, Kai Ding, Shujiang Sci Rep Article We report a simple synthetic approach to coaxially grow transition metal oxide (TMO) nanostructures on carbon nanotubes (CNT) with ready control of phase and morphology. A thin (~4 nm) sulfonated-polystyrene (SPS) pre-coating is essential for the deposition of transition metal based materials. This layer has abundant sulfonic groups (−SO(3)(−)) that can effectively attract Ni(2+), Co(2+), Zn(2+) ions through electrostatic interaction and induce them via hydrolysis, dehydration and recrystallization to form coaxial (NiO, Co(3)O(4), NiCoO(2) and ZnCo(2)O(4)) shells and a nanosheet-like morphology around CNT. These structures possess a large active surface and enhanced structural robustness when used as electrode materials for lithium-ion batteries (LIBs) and electrochemical capacitors (ECs). As electrodes for LIBs, the ZnCo(2)O(4)@CNT material shows extremely stable cycling performance with a discharge capacity of 1068 mAh g(−1) after 100 cycles at a current density of 400 mAg(−1). For EC applications, the NiCoO(2)@CNT exhibits a high capacitance of 1360 Fg(−1) at current densities of 10 Ag(−1) after 3000 cycles and an overall capacitance loss of only 1.4%. These results demonstrate the potential of such hybrid materials meeting the crucial requirements of cycling stability and high rate capability for energy conversion and storage devices. Nature Publishing Group 2016-11-25 /pmc/articles/PMC5123580/ /pubmed/27886231 http://dx.doi.org/10.1038/srep37752 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Zhou, Han Zhang, Lusi Zhang, Dongyang Chen, Shuangqiang Coxon, Paul R. He, Xiong Coto, Mike Kim, Hyun-Kyung Xi, Kai Ding, Shujiang A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors |
title | A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors |
title_full | A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors |
title_fullStr | A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors |
title_full_unstemmed | A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors |
title_short | A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors |
title_sort | universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123580/ https://www.ncbi.nlm.nih.gov/pubmed/27886231 http://dx.doi.org/10.1038/srep37752 |
work_keys_str_mv | AT zhouhan auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT zhanglusi auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT zhangdongyang auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT chenshuangqiang auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT coxonpaulr auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT hexiong auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT cotomike auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT kimhyunkyung auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT xikai auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT dingshujiang auniversalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT zhouhan universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT zhanglusi universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT zhangdongyang universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT chenshuangqiang universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT coxonpaulr universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT hexiong universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT cotomike universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT kimhyunkyung universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT xikai universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors AT dingshujiang universalsyntheticroutetocarbonnanotubetransitionmetaloxidenanocompositesforlithiumionbatteriesandelectrochemicalcapacitors |