Cargando…
Peptide tessellation yields micron-scale collagen triple helices
Sticky-ended DNA duplexes can associate spontaneously into long double helices; however, such self-assembly is much less developed with proteins. Collagen is the most prevalent component of the extracellular matrix and a common clinical biomaterial. Like natural DNA, the ∼10(3)-residue triple-helice...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123832/ https://www.ncbi.nlm.nih.gov/pubmed/27768103 http://dx.doi.org/10.1038/nchem.2556 |
Sumario: | Sticky-ended DNA duplexes can associate spontaneously into long double helices; however, such self-assembly is much less developed with proteins. Collagen is the most prevalent component of the extracellular matrix and a common clinical biomaterial. Like natural DNA, the ∼10(3)-residue triple-helices (∼300 nm) of natural collagen are recalcitrant to chemical synthesis. Here we show how the self-assembly of short collagen-mimetic peptides (CMPs) can enable the fabrication of synthetic collagen triple-helices that are nearly a micron in length. Inspired by the mathematics of tessellations, we derive rules for the design of single CMPs that self-assemble into long triple helices with perfect symmetry. Sticky-ends thus created are uniform across the assembly and drive its growth. Enacting this design yields individual triple-helices that match or exceed those in natural collagen in length and are remarkably thermostable, despite the absence of higher-order association. Symmetric assembly of CMPs provides an enabling platform for the development of advanced materials for medicine and nanotechnology. |
---|