Cargando…

OsWRKY80-OsWRKY4 Module as a Positive Regulatory Circuit in Rice Resistance Against Rhizoctonia solani

BACKGROUND: Plant WRKY transcription factors play pivotal roles in diverse biological processes but most notably in plant defense response to pathogens. Sheath blight represents one of the predominant diseases in rice. However, our knowledge about the functions of WRKY proteins in rice defense again...

Descripción completa

Detalles Bibliográficos
Autores principales: Peng, Xixu, Wang, Haihua, Jang, Jyan-Chyun, Xiao, Ting, He, Huanhuan, Jiang, Dan, Tang, Xinke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5124021/
https://www.ncbi.nlm.nih.gov/pubmed/27888467
http://dx.doi.org/10.1186/s12284-016-0137-y
Descripción
Sumario:BACKGROUND: Plant WRKY transcription factors play pivotal roles in diverse biological processes but most notably in plant defense response to pathogens. Sheath blight represents one of the predominant diseases in rice. However, our knowledge about the functions of WRKY proteins in rice defense against sheath blight is rather limited. RESULTS: Here we demonstrate that the expression of Oryza sativa WRKY80 gene (OsWRKY80) is rapidly and strongly induced upon infection of Rhizoctonia solani, the causal agent of rice sheath blight disease. OsWRKY80 expression is also induced by exogenous jasmonic acid (JA) and ethylene (ET), but not by salicylic acid (SA). OsWRKY80-GFP is localized in the nuclei of onion epidermal cells in a transient expression assay. Consistently, OsWRKY80 exhibits transcriptional activation activity in a GAL4 assay in yeast cells. Overexpression of OsWRKY80 in rice plants significantly enhanced disease resistance to R. solani, concomitant with elevated expression of OsWRKY4, another positive regulator in rice defense against R. solani. Suppression of OsWRKY80 by RNA interference (RNAi), on the other hand, compromised disease resistance to R. solani. Results of yeast one-hybrid assay and transient expression assay in tobacco cells have revealed that OsWRKY80 specifically binds to the promoter regions of OsWRKY4, which contain W-box (TTGAC[C/T]) or W-box like (TGAC[C/T]) cis-elements. CONCLUSIONS: We propose that OsWRKY80 functions upstream of OsWRKY4 as an important positive regulatory circuit that is implicated in rice defense response to sheath blight pathogen R. solani. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12284-016-0137-y) contains supplementary material, which is available to authorized users.