Cargando…
Combining Multiple Hypothesis Testing with Machine Learning Increases the Statistical Power of Genome-wide Association Studies
The standard approach to the analysis of genome-wide association studies (GWAS) is based on testing each position in the genome individually for statistical significance of its association with the phenotype under investigation. To improve the analysis of GWAS, we propose a combination of machine le...
Autores principales: | Mieth, Bettina, Kloft, Marius, Rodríguez, Juan Antonio, Sonnenburg, Sören, Vobruba, Robin, Morcillo-Suárez, Carlos, Farré, Xavier, Marigorta, Urko M., Fehr, Ernst, Dickhaus, Thorsten, Blanchard, Gilles, Schunk, Daniel, Navarro, Arcadi, Müller, Klaus-Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125008/ https://www.ncbi.nlm.nih.gov/pubmed/27892471 http://dx.doi.org/10.1038/srep36671 |
Ejemplares similares
-
High Trans-ethnic Replicability of GWAS Results Implies Common Causal Variants
por: Marigorta, Urko M., et al.
Publicado: (2013) -
Assessing statistical significance in multivariable genome wide association analysis
por: Buzdugan, Laura, et al.
Publicado: (2016) -
Recent human evolution has shaped geographical differences in susceptibility to disease
por: Marigorta, Urko M, et al.
Publicado: (2011) -
Correction: Genetic factors affecting EBV copy number in lymphoblastoid cell lines derived from the 1000 Genome Project samples
por: Mandage, Rajendra, et al.
Publicado: (2018) -
Genetic factors affecting EBV copy number in lymphoblastoid cell lines derived from the 1000 Genome Project samples
por: Mandage, Rajendra, et al.
Publicado: (2017)