Cargando…
Temporally-coherent terawatt attosecond XFEL synchronized with a few cycle laser
Attosecond metrology using laser-based high-order harmonics has been significantly advanced and applied to various studies of electron dynamics in atoms, molecules and solids. Laser-based high-order harmonics have a limitation of low power and photon energies. There is, however, a great demand for e...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125274/ https://www.ncbi.nlm.nih.gov/pubmed/27892964 http://dx.doi.org/10.1038/srep37700 |
Sumario: | Attosecond metrology using laser-based high-order harmonics has been significantly advanced and applied to various studies of electron dynamics in atoms, molecules and solids. Laser-based high-order harmonics have a limitation of low power and photon energies. There is, however, a great demand for even higher power and photon energy. Here, we propose a scheme for a terawatt attosecond (TW-as) X-ray pulse in X-ray free-electron laser controlled by a few cycle IR pulse, where one dominant current spike in an electron bunch is used repeatedly to amplify a seeded radiation to a terawatt level. This scheme is relatively simple, compact, straightforward, and also produces a temporally and spectrally clean pulse. The viability of this scheme is demonstrated in simulations using Pohang accelerator laboratory (PAL)-XFEL beam parameters. |
---|