Cargando…

Radar signatures of snowflake riming: A modeling study

The capability to detect the state of snowflake riming reliably from remote measurements would greatly expand the understanding of its global role in cloud‐precipitation processes. To investigate the ability of multifrequency radars to detect riming, a three‐dimensional model of snowflake growth was...

Descripción completa

Detalles Bibliográficos
Autores principales: Leinonen, Jussi, Szyrmer, Wanda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125410/
https://www.ncbi.nlm.nih.gov/pubmed/27981073
http://dx.doi.org/10.1002/2015EA000102
Descripción
Sumario:The capability to detect the state of snowflake riming reliably from remote measurements would greatly expand the understanding of its global role in cloud‐precipitation processes. To investigate the ability of multifrequency radars to detect riming, a three‐dimensional model of snowflake growth was used to generate simulated aggregate and crystal snowflakes with various degrees of riming. Three different growth scenarios, representing different temporal relationships between aggregation and riming, were formulated. The discrete dipole approximation was then used to compute the radar backscattering properties of the snowflakes at frequencies of 9.7, 13.6, 35.6, and 94 GHz. In two of the three growth scenarios, the rimed snowflakes exhibit large differences between the backscattering cross sections of the detailed three‐dimensional models and the equivalent homogeneous spheroidal models, similarly to earlier results for unrimed snowflakes. When three frequencies are used simultaneously, riming appears to be detectable in a robust manner across all three scenarios. In spite of the differences in backscattering cross sections, the triple‐frequency signatures of heavily rimed particles resemble those of the homogeneous spheroids, thus explaining earlier observational results that were compatible with such spheroids.