Cargando…

Effects of High-Fat Diet on Stress Response in Male and Female Wildtype and Prolactin Knockout Mice

Prolactin (PRL) is well characterized for its roles in initiation and maintenance of lactation, and it also suppresses stress-induced responses. Feeding a high-fat diet (HFD) disrupts activity of the hypothalamic-pituitary-adrenal (HPA) axis. Whether PRL regulates HPA axis activation under HFD feedi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kalyani, Manu, Hasselfeld, Kathryn, Janik, James M., Callahan, Phyllis, Shi, Haifei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125580/
https://www.ncbi.nlm.nih.gov/pubmed/27893788
http://dx.doi.org/10.1371/journal.pone.0166416
_version_ 1782469983768412160
author Kalyani, Manu
Hasselfeld, Kathryn
Janik, James M.
Callahan, Phyllis
Shi, Haifei
author_facet Kalyani, Manu
Hasselfeld, Kathryn
Janik, James M.
Callahan, Phyllis
Shi, Haifei
author_sort Kalyani, Manu
collection PubMed
description Prolactin (PRL) is well characterized for its roles in initiation and maintenance of lactation, and it also suppresses stress-induced responses. Feeding a high-fat diet (HFD) disrupts activity of the hypothalamic-pituitary-adrenal (HPA) axis. Whether PRL regulates HPA axis activation under HFD feeding is not clear. Male and female wildtype (WT) and PRL knockout (KO) mice were fed either a standard low-fat diet (LFD) or HFD for 12 weeks. Circulating corticosterone (CORT) levels were measured before, during, and after mice were subjected to an acute restraint stress or remained in their home cages as no stress controls. HFD feeding increased leptin levels, but the increase was lower in KO than in WT mice. All stressed female groups and only LFD-fed stressed males had elevated CORT levels compared to their no stress same-sex counterparts regardless of genotype. These results indicated that HFD consumption blunted the HPA axis response to acute stress in males but not females. Additionally, basal hypothalamic CRH content was lower in HFD than LFD males, but was similar among female groups. Furthermore, although basal CORT levels were similar among KO and WT groups, CORT levels were higher in KO mice than their WT counterparts during stress, suggesting that loss of PRL led to greater HPA axis activation. Basal PRL receptor mRNA levels in the choroid plexus were higher in HFD than LFD same-sex counterparts, suggesting activation of central PRL’s action by HFD feeding in both males and females. Current results confirmed PRL’s roles in suppression of the stress-induced HPA axis activation. Although HFD feeding activated central PRL’s action in both sexes, only the male HPA axis was dampened by HFD feeding.
format Online
Article
Text
id pubmed-5125580
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-51255802016-12-15 Effects of High-Fat Diet on Stress Response in Male and Female Wildtype and Prolactin Knockout Mice Kalyani, Manu Hasselfeld, Kathryn Janik, James M. Callahan, Phyllis Shi, Haifei PLoS One Research Article Prolactin (PRL) is well characterized for its roles in initiation and maintenance of lactation, and it also suppresses stress-induced responses. Feeding a high-fat diet (HFD) disrupts activity of the hypothalamic-pituitary-adrenal (HPA) axis. Whether PRL regulates HPA axis activation under HFD feeding is not clear. Male and female wildtype (WT) and PRL knockout (KO) mice were fed either a standard low-fat diet (LFD) or HFD for 12 weeks. Circulating corticosterone (CORT) levels were measured before, during, and after mice were subjected to an acute restraint stress or remained in their home cages as no stress controls. HFD feeding increased leptin levels, but the increase was lower in KO than in WT mice. All stressed female groups and only LFD-fed stressed males had elevated CORT levels compared to their no stress same-sex counterparts regardless of genotype. These results indicated that HFD consumption blunted the HPA axis response to acute stress in males but not females. Additionally, basal hypothalamic CRH content was lower in HFD than LFD males, but was similar among female groups. Furthermore, although basal CORT levels were similar among KO and WT groups, CORT levels were higher in KO mice than their WT counterparts during stress, suggesting that loss of PRL led to greater HPA axis activation. Basal PRL receptor mRNA levels in the choroid plexus were higher in HFD than LFD same-sex counterparts, suggesting activation of central PRL’s action by HFD feeding in both males and females. Current results confirmed PRL’s roles in suppression of the stress-induced HPA axis activation. Although HFD feeding activated central PRL’s action in both sexes, only the male HPA axis was dampened by HFD feeding. Public Library of Science 2016-11-28 /pmc/articles/PMC5125580/ /pubmed/27893788 http://dx.doi.org/10.1371/journal.pone.0166416 Text en © 2016 Kalyani et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Kalyani, Manu
Hasselfeld, Kathryn
Janik, James M.
Callahan, Phyllis
Shi, Haifei
Effects of High-Fat Diet on Stress Response in Male and Female Wildtype and Prolactin Knockout Mice
title Effects of High-Fat Diet on Stress Response in Male and Female Wildtype and Prolactin Knockout Mice
title_full Effects of High-Fat Diet on Stress Response in Male and Female Wildtype and Prolactin Knockout Mice
title_fullStr Effects of High-Fat Diet on Stress Response in Male and Female Wildtype and Prolactin Knockout Mice
title_full_unstemmed Effects of High-Fat Diet on Stress Response in Male and Female Wildtype and Prolactin Knockout Mice
title_short Effects of High-Fat Diet on Stress Response in Male and Female Wildtype and Prolactin Knockout Mice
title_sort effects of high-fat diet on stress response in male and female wildtype and prolactin knockout mice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125580/
https://www.ncbi.nlm.nih.gov/pubmed/27893788
http://dx.doi.org/10.1371/journal.pone.0166416
work_keys_str_mv AT kalyanimanu effectsofhighfatdietonstressresponseinmaleandfemalewildtypeandprolactinknockoutmice
AT hasselfeldkathryn effectsofhighfatdietonstressresponseinmaleandfemalewildtypeandprolactinknockoutmice
AT janikjamesm effectsofhighfatdietonstressresponseinmaleandfemalewildtypeandprolactinknockoutmice
AT callahanphyllis effectsofhighfatdietonstressresponseinmaleandfemalewildtypeandprolactinknockoutmice
AT shihaifei effectsofhighfatdietonstressresponseinmaleandfemalewildtypeandprolactinknockoutmice