Cargando…

Morphology and Species Composition of Southern Adriatic Sea Leptocephali Evaluated Using DNA Barcoding

Leptocephali are the characteristic larvae of the superorder Elopomorpha that are difficult to identify at the species level. In this study, we used DNA barcoding (i.e. short genetic sequences of DNA used as unique species tags) coupled with classical taxonomic methods to identify leptocephali in th...

Descripción completa

Detalles Bibliográficos
Autores principales: Anibaldi, Alessandra, Benassi Franciosi, Claudia, Massari, Francesco, Tinti, Fausto, Piccinetti, Corrado, Riccioni, Giulia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125788/
https://www.ncbi.nlm.nih.gov/pubmed/27893773
http://dx.doi.org/10.1371/journal.pone.0166137
Descripción
Sumario:Leptocephali are the characteristic larvae of the superorder Elopomorpha that are difficult to identify at the species level. In this study, we used DNA barcoding (i.e. short genetic sequences of DNA used as unique species tags) coupled with classical taxonomic methods to identify leptocephali in the southern Adriatic Sea. This information will provide an assessment of the biodiversity of the eel larvae in this region. A total of 2,785 leptocephali were collected, and using external morphology were assigned to seven morphotypes: Ariosoma balearicum, Conger conger, Gnathophis mystax, Facciolella sp., Nettastoma melanurum, Dalophis imberbis and Chlopsis bicolor. Collectively, these seven morphotypes are considered to be a good proxy for the Anguilliformes community (the main order of the Elopomorpha) in the southern Adriatic Sea (to date, seven families and sixteen species have been recorded in this region). Interestingly, the higher number of G. mystax larvae collected suggests an increased abundance of this genus. To validate the morphological identifications, we sequenced 61 leptocephali (at a 655 bp fragment from the cytochrome oxidase subunit 1 mitochondrial region) and developed barcode vouchers for the seven morphotypes. Using genetic information from reference databases, we validated three of these morphotypes. Where reference sequences were unavailable, we generated barcodes for both adult and juvenile forms to provide additional genetic information. Using this integrated approach allowed us to characterize a new species of Facciolella in the Adriatic Sea for the first time. Moreover, we also revealed a lack of differentiation, at the species level, between G. mistax and G. bathytopos, a western Atlantic Ocean species. Our morphological and barcode data have been published in the Barcoding of the Adriatic Leptocephali database. This work represents the first contribution to a wider project that aims to create a barcode database to support the assessment of leptocephali diversity in the Mediterranean Sea.