Cargando…
A New Semi-automated Method for Assessing Avian Acoustic Networks Reveals that Juvenile and Adult Zebra Finches Have Separate Calling Networks
Social networks are often inferred from spatial associations, but other parameters like acoustic communication are likely to play a central role in within group interactions. However, it is currently difficult to determine which individual initiates vocalizations, or who responds to whom. To this ai...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5126114/ https://www.ncbi.nlm.nih.gov/pubmed/27965602 http://dx.doi.org/10.3389/fpsyg.2016.01816 |
Sumario: | Social networks are often inferred from spatial associations, but other parameters like acoustic communication are likely to play a central role in within group interactions. However, it is currently difficult to determine which individual initiates vocalizations, or who responds to whom. To this aim, we designed a method that allows analyzing group vocal network while controlling for spatial networks, by positioning each group member in equidistant individual cages and analyzing continuous vocal interactions semi-automatically. We applied this method to two types of zebra finch groups, composed of either two adult females and two juveniles, or four young adults (juveniles from the first groups). Young often co-occur in the same social group as adults but are likely to have a different social role, which may be reflected in their vocal interactions. Therefore, we tested the hypothesis that the social structure of the group influences the parameters of the group vocal network. We found that groups including juveniles presented periods with higher level of activity than groups composed of young adults. Using two types of analyses (Markov analysis and cross-correlation), we showed that juveniles as well as adults were more likely to respond to individuals of their own age-class (i.e. to call one after another, in terms of turn-taking, and within a short time-window, in terms of time delay). When juveniles turned into adulthood, they showed adult characteristics of vocal patterns. Together our results suggest that vocal behavior changes during ontogeny, and individuals are more strongly connected with individuals of the same age-class within acoustic networks. |
---|