Cargando…
Co thin films deposited directly on ZnO polar surfaces
A ferromagnetic (FM)-metal/oxide stack is the key structure determining the performance of spintronic devices. However, the effect of the electronic polarity of the oxide on the magnetic properties of the adjacent FM-metal has not been investigated previously. Here, we report the magnetic and struct...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5126557/ https://www.ncbi.nlm.nih.gov/pubmed/27897251 http://dx.doi.org/10.1038/srep38005 |
Sumario: | A ferromagnetic (FM)-metal/oxide stack is the key structure determining the performance of spintronic devices. However, the effect of the electronic polarity of the oxide on the magnetic properties of the adjacent FM-metal has not been investigated previously. Here, we report the magnetic and structural properties of Co ultra-thin films sputter deposited directly on the Zn- and O-polar surfaces of ZnO substrates. The magnetic anisotropy and Curie temperature exhibit dramatic polarity-dependent differences for films on these surfaces. Structural analyses reveal that the heterointerface of the Co/O-polar surface is rather diffusive, whereas that of the Co/Zn-polar surface is atomically flat. These results suggest that the surface polarity plays a key role in determining the properties of the film. This novel FM-metal/polar-oxide system is expected to add new functionality to spintronic devices and provide an ideal basis for investigating the effect of a built-in electric field on the magnetism in a metallic monolayer. |
---|