Cargando…
High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics
Seven equimolar, five-component, metal diborides were fabricated via high-energy ball milling and spark plasma sintering. Six of them, including (Hf(0.2)Zr(0.2)Ta(0.2)Nb(0.2)Ti(0.2))B(2), (Hf(0.2)Zr(0.2)Ta(0.2)Mo(0.2)Ti(0.2))B(2), (Hf(0.2)Zr(0.2)Mo(0.2)Nb(0.2)Ti(0.2))B(2), (Hf(0.2)Mo(0.2)Ta(0.2)Nb(0...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5126569/ https://www.ncbi.nlm.nih.gov/pubmed/27897255 http://dx.doi.org/10.1038/srep37946 |
Sumario: | Seven equimolar, five-component, metal diborides were fabricated via high-energy ball milling and spark plasma sintering. Six of them, including (Hf(0.2)Zr(0.2)Ta(0.2)Nb(0.2)Ti(0.2))B(2), (Hf(0.2)Zr(0.2)Ta(0.2)Mo(0.2)Ti(0.2))B(2), (Hf(0.2)Zr(0.2)Mo(0.2)Nb(0.2)Ti(0.2))B(2), (Hf(0.2)Mo(0.2)Ta(0.2)Nb(0.2)Ti(0.2))B(2), (Mo(0.2)Zr(0.2)Ta(0.2)Nb(0.2)Ti(0.2))B(2), and (Hf(0.2)Zr(0.2)Ta(0.2)Cr(0.2)Ti(0.2))B(2), possess virtually one solid-solution boride phase of the hexagonal AlB(2) structure. Revised Hume-Rothery size-difference factors are used to rationalize the formation of high-entropy solid solutions in these metal diborides. Greater than 92% of the theoretical densities have been generally achieved with largely uniform compositions from nanoscale to microscale. Aberration-corrected scanning transmission electron microscopy (AC STEM), with high-angle annular dark-field and annular bright-field (HAADF and ABF) imaging and nanoscale compositional mapping, has been conducted to confirm the formation of 2-D high-entropy metal layers, separated by rigid 2-D boron nets, without any detectable layered segregation along the c-axis. These materials represent a new type of ultra-high temperature ceramics (UHTCs) as well as a new class of high-entropy materials, which not only exemplify the first high-entropy non-oxide ceramics (borides) fabricated but also possess a unique non-cubic (hexagonal) and layered (quasi-2D) high-entropy crystal structure that markedly differs from all those reported in prior studies. Initial property assessments show that both the hardness and the oxidation resistance of these high-entropy metal diborides are generally higher/better than the average performances of five individual metal diborides made by identical fabrication processing. |
---|