Cargando…

Arrangement at the nanoscale: Effect on magnetic particle hyperthermia

In this work, we present the arrangement of Fe(3)O(4) magnetic nanoparticles into 3D linear chains and its effect on magnetic particle hyperthermia efficiency. The alignment has been performed under a 40 mT magnetic field in an agarose gel matrix. Two different sizes of magnetite nanoparticles, 10 a...

Descripción completa

Detalles Bibliográficos
Autores principales: Myrovali, E., Maniotis, N., Makridis, A., Terzopoulou, A., Ntomprougkidis, V., Simeonidis, K., Sakellari, D., Kalogirou, O., Samaras, T., Salikhov, R., Spasova, M., Farle, M., Wiedwald, U., Angelakeris, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5126575/
https://www.ncbi.nlm.nih.gov/pubmed/27897195
http://dx.doi.org/10.1038/srep37934
_version_ 1782470125654376448
author Myrovali, E.
Maniotis, N.
Makridis, A.
Terzopoulou, A.
Ntomprougkidis, V.
Simeonidis, K.
Sakellari, D.
Kalogirou, O.
Samaras, T.
Salikhov, R.
Spasova, M.
Farle, M.
Wiedwald, U.
Angelakeris, M.
author_facet Myrovali, E.
Maniotis, N.
Makridis, A.
Terzopoulou, A.
Ntomprougkidis, V.
Simeonidis, K.
Sakellari, D.
Kalogirou, O.
Samaras, T.
Salikhov, R.
Spasova, M.
Farle, M.
Wiedwald, U.
Angelakeris, M.
author_sort Myrovali, E.
collection PubMed
description In this work, we present the arrangement of Fe(3)O(4) magnetic nanoparticles into 3D linear chains and its effect on magnetic particle hyperthermia efficiency. The alignment has been performed under a 40 mT magnetic field in an agarose gel matrix. Two different sizes of magnetite nanoparticles, 10 and 40 nm, have been examined, exhibiting room temperature superparamagnetic and ferromagnetic behavior, in terms of DC magnetic field, respectively. The chain formation is experimentally visualized by scanning electron microscopy images. A molecular Dynamics anisotropic diffusion model that outlines the role of intrinsic particle properties and inter-particle distances on dipolar interactions has been used to simulate the chain formation process. The anisotropic character of the aligned samples is also reflected to ferromagnetic resonance and static magnetometry measurements. Compared to the non-aligned samples, magnetically aligned ones present enhanced heating efficiency increasing specific loss power value by a factor of two. Dipolar interactions are responsible for the chain formation of controllable density and thickness inducing shape anisotropy, which in turn enhances magnetic particle hyperthermia efficiency.
format Online
Article
Text
id pubmed-5126575
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-51265752016-12-08 Arrangement at the nanoscale: Effect on magnetic particle hyperthermia Myrovali, E. Maniotis, N. Makridis, A. Terzopoulou, A. Ntomprougkidis, V. Simeonidis, K. Sakellari, D. Kalogirou, O. Samaras, T. Salikhov, R. Spasova, M. Farle, M. Wiedwald, U. Angelakeris, M. Sci Rep Article In this work, we present the arrangement of Fe(3)O(4) magnetic nanoparticles into 3D linear chains and its effect on magnetic particle hyperthermia efficiency. The alignment has been performed under a 40 mT magnetic field in an agarose gel matrix. Two different sizes of magnetite nanoparticles, 10 and 40 nm, have been examined, exhibiting room temperature superparamagnetic and ferromagnetic behavior, in terms of DC magnetic field, respectively. The chain formation is experimentally visualized by scanning electron microscopy images. A molecular Dynamics anisotropic diffusion model that outlines the role of intrinsic particle properties and inter-particle distances on dipolar interactions has been used to simulate the chain formation process. The anisotropic character of the aligned samples is also reflected to ferromagnetic resonance and static magnetometry measurements. Compared to the non-aligned samples, magnetically aligned ones present enhanced heating efficiency increasing specific loss power value by a factor of two. Dipolar interactions are responsible for the chain formation of controllable density and thickness inducing shape anisotropy, which in turn enhances magnetic particle hyperthermia efficiency. Nature Publishing Group 2016-11-29 /pmc/articles/PMC5126575/ /pubmed/27897195 http://dx.doi.org/10.1038/srep37934 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Myrovali, E.
Maniotis, N.
Makridis, A.
Terzopoulou, A.
Ntomprougkidis, V.
Simeonidis, K.
Sakellari, D.
Kalogirou, O.
Samaras, T.
Salikhov, R.
Spasova, M.
Farle, M.
Wiedwald, U.
Angelakeris, M.
Arrangement at the nanoscale: Effect on magnetic particle hyperthermia
title Arrangement at the nanoscale: Effect on magnetic particle hyperthermia
title_full Arrangement at the nanoscale: Effect on magnetic particle hyperthermia
title_fullStr Arrangement at the nanoscale: Effect on magnetic particle hyperthermia
title_full_unstemmed Arrangement at the nanoscale: Effect on magnetic particle hyperthermia
title_short Arrangement at the nanoscale: Effect on magnetic particle hyperthermia
title_sort arrangement at the nanoscale: effect on magnetic particle hyperthermia
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5126575/
https://www.ncbi.nlm.nih.gov/pubmed/27897195
http://dx.doi.org/10.1038/srep37934
work_keys_str_mv AT myrovalie arrangementatthenanoscaleeffectonmagneticparticlehyperthermia
AT maniotisn arrangementatthenanoscaleeffectonmagneticparticlehyperthermia
AT makridisa arrangementatthenanoscaleeffectonmagneticparticlehyperthermia
AT terzopouloua arrangementatthenanoscaleeffectonmagneticparticlehyperthermia
AT ntomprougkidisv arrangementatthenanoscaleeffectonmagneticparticlehyperthermia
AT simeonidisk arrangementatthenanoscaleeffectonmagneticparticlehyperthermia
AT sakellarid arrangementatthenanoscaleeffectonmagneticparticlehyperthermia
AT kalogirouo arrangementatthenanoscaleeffectonmagneticparticlehyperthermia
AT samarast arrangementatthenanoscaleeffectonmagneticparticlehyperthermia
AT salikhovr arrangementatthenanoscaleeffectonmagneticparticlehyperthermia
AT spasovam arrangementatthenanoscaleeffectonmagneticparticlehyperthermia
AT farlem arrangementatthenanoscaleeffectonmagneticparticlehyperthermia
AT wiedwaldu arrangementatthenanoscaleeffectonmagneticparticlehyperthermia
AT angelakerism arrangementatthenanoscaleeffectonmagneticparticlehyperthermia