Cargando…
pH-Sensitive Pt Nanocluster Assembly Overcomes Cisplatin Resistance and Heterogeneous Stemness of Hepatocellular Carcinoma
[Image: see text] Response rates to conventional chemotherapeutics remain unsatisfactory for hepatocellular carcinoma (HCC) due to the high rates of chemoresistance and recurrence. Tumor-initiating cancer stem-like cells (CSLCs) are refractory to chemotherapy, and their enrichment leads to subsequen...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5126722/ https://www.ncbi.nlm.nih.gov/pubmed/27924308 http://dx.doi.org/10.1021/acscentsci.6b00197 |
Sumario: | [Image: see text] Response rates to conventional chemotherapeutics remain unsatisfactory for hepatocellular carcinoma (HCC) due to the high rates of chemoresistance and recurrence. Tumor-initiating cancer stem-like cells (CSLCs) are refractory to chemotherapy, and their enrichment leads to subsequent development of chemoresistance and recurrence. To overcome the chemoresistance and stemness in HCC, we synthesized a Pt nanocluster assembly (Pt-NA) composed of assembled Pt nanoclusters incorporating a pH-sensitive polymer and HCC-targeting peptide. Pt-NA is latent in peripheral blood, readily targets disseminated HCC CSLCs, and disassembles into small Pt nanoclusters in acidic subcellular compartments, eventually inducing damage to DNA. Furthermore, treatment with Pt-NA downregulates a multitude of genes that are vital for the proliferation of HCC. Importantly, CD24+ side population (SP) CSLCs that are resistant to cisplatin are sensitive to Pt-NA, demonstrating the immense potential of Pt-NA for treating chemoresistant HCC. |
---|