Cargando…
Systematic chemical-genetic and chemical-chemical interaction datasets for prediction of compound synergism
The network structure of biological systems suggests that effective therapeutic intervention may require combinations of agents that act synergistically. However, a dearth of systematic chemical combination datasets have limited the development of predictive algorithms for chemical synergism. Here,...
Autores principales: | Wildenhain, Jan, Spitzer, Michaela, Dolma, Sonam, Jarvik, Nick, White, Rachel, Roy, Marcia, Griffiths, Emma, Bellows, David S., Wright, Gerard D., Tyers, Mike |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5127411/ https://www.ncbi.nlm.nih.gov/pubmed/27874849 http://dx.doi.org/10.1038/sdata.2016.95 |
Ejemplares similares
-
Proteomic profiling dataset of chemical perturbations in multiple biological backgrounds
por: Dele-Oni, Deborah O., et al.
Publicado: (2021) -
Two excited-state datasets for quantum chemical UV-vis spectra of organic molecules
por: Lupo Pasini, Massimiliano, et al.
Publicado: (2023) -
A quantum chemical interaction energy dataset for accurately modeling protein-ligand interactions
por: Spronk, Steven A., et al.
Publicado: (2023) -
BSE49, a diverse, high-quality benchmark dataset of separation energies of chemical bonds
por: Prasad, Viki Kumar, et al.
Publicado: (2021) -
The Chemical and Products Database, a resource for exposure-relevant data on chemicals in consumer products
por: Dionisio, Kathie L., et al.
Publicado: (2018)