Cargando…

History-dependent variability in population dynamics during evidence accumulation in cortex

We studied how the posterior parietal cortex combined new information with ongoing activity dynamics as mice accumulated evidence during a virtual-navigation task. Using new methods to analyze population activity on single trials, we found that activity transitioned rapidly between different sets of...

Descripción completa

Detalles Bibliográficos
Autores principales: Morcos, Ari S., Harvey, Christopher D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5127723/
https://www.ncbi.nlm.nih.gov/pubmed/27694990
http://dx.doi.org/10.1038/nn.4403
Descripción
Sumario:We studied how the posterior parietal cortex combined new information with ongoing activity dynamics as mice accumulated evidence during a virtual-navigation task. Using new methods to analyze population activity on single trials, we found that activity transitioned rapidly between different sets of active neurons. Each event in a trial — whether an evidence cue or a behavioral choice — caused seconds-long modifications to the probabilities that govern how one activity pattern transitions to the next, forming a short-term memory. A sequence of evidence cues triggered a chain of these modifications resulting in a signal for accumulated evidence. Multiple distinguishable activity patterns were possible for the same accumulated evidence because representations of ongoing events were influenced by previous within and across trial events. Therefore, evidence accumulation need not require the explicit competition between groups of neurons, as in winner-take-all models, but could instead emerge implicitly from general dynamical properties that instantiate short-term memory.