Cargando…

Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl(3)

Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majora...

Descripción completa

Detalles Bibliográficos
Autores principales: Yadav, Ravi, Bogdanov, Nikolay A., Katukuri, Vamshi M., Nishimoto, Satoshi, van den Brink, Jeroen, Hozoi, Liviu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5128801/
https://www.ncbi.nlm.nih.gov/pubmed/27901091
http://dx.doi.org/10.1038/srep37925
Descripción
Sumario:Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d(5) honeycomb halide α-RuCl(3). From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d(5) iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d(5) halides and oxides in general.