Cargando…
Sparsity-based multi-height phase recovery in holographic microscopy
High-resolution imaging of densely connected samples such as pathology slides using digital in-line holographic microscopy requires the acquisition of several holograms, e.g., at >6–8 different sample-to-sensor distances, to achieve robust phase recovery and coherent imaging of specimen. Reducing...
Autores principales: | Rivenson, Yair, Wu, Yichen, Wang, Hongda, Zhang, Yibo, Feizi, Alborz, Ozcan, Aydogan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129015/ https://www.ncbi.nlm.nih.gov/pubmed/27901048 http://dx.doi.org/10.1038/srep37862 |
Ejemplares similares
-
Phase recovery and holographic image reconstruction using deep learning in neural networks
por: Rivenson, Yair, et al.
Publicado: (2018) -
Propagation phasor approach for holographic image reconstruction
por: Luo, Wei, et al.
Publicado: (2016) -
Corrigendum: Propagation phasor approach for holographic image reconstruction
por: Luo, Wei, et al.
Publicado: (2016) -
PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning
por: Rivenson, Yair, et al.
Publicado: (2019) -
Resolution enhancement in scanning electron microscopy using deep learning
por: de Haan, Kevin, et al.
Publicado: (2019)