Cargando…
MediBoost: a Patient Stratification Tool for Interpretable Decision Making in the Era of Precision Medicine
Machine learning algorithms that are both interpretable and accurate are essential in applications such as medicine where errors can have a dire consequence. Unfortunately, there is currently a tradeoff between accuracy and interpretability among state-of-the-art methods. Decision trees are interpre...
Autores principales: | Valdes, Gilmer, Luna, José Marcio, Eaton, Eric, Simone, Charles B., Ungar, Lyle H., Solberg, Timothy D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129017/ https://www.ncbi.nlm.nih.gov/pubmed/27901055 http://dx.doi.org/10.1038/srep37854 |
Ejemplares similares
-
Building more accurate decision trees with the additive tree
por: Luna, José Marcio, et al.
Publicado: (2019) -
Reply to Nock and Nielsen: On the work of Nock and Nielsen and its relationship to the additive tree
por: Valdes, Gilmer, et al.
Publicado: (2020) -
Expert-augmented machine learning
por: Gennatas, Efstathios D., et al.
Publicado: (2020) -
Medi-wiki worries?
por: Mason, Fred
Publicado: (2009) -
MediNet: transfer learning approach with MediNet medical visual database
por: Reis, Hatice Catal, et al.
Publicado: (2023)