Cargando…

The use of the NEDD8 inhibitor MLN4924 (Pevonedistat) in a cyclotherapy approach to protect wild-type p53 cells from MLN4924 induced toxicity

Targetting the ubiquitin pathway is an attractive strategy for cancer therapy. The inhibitor of the ubiquitin-like molecule NEDD8 pathway, MLN4924 (Pevonedistat) is in Phase II clinical trials. Protection of healthy cells from the induced toxicity of the treatment while preserving anticancer efficac...

Descripción completa

Detalles Bibliográficos
Autores principales: Malhab, Lara J. Bou, Descamps, Simon, Delaval, Benedicte, Xirodimas, Dimitris P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129021/
https://www.ncbi.nlm.nih.gov/pubmed/27901050
http://dx.doi.org/10.1038/srep37775
Descripción
Sumario:Targetting the ubiquitin pathway is an attractive strategy for cancer therapy. The inhibitor of the ubiquitin-like molecule NEDD8 pathway, MLN4924 (Pevonedistat) is in Phase II clinical trials. Protection of healthy cells from the induced toxicity of the treatment while preserving anticancer efficacy is a highly anticipated outcome in chemotherapy. Cyclotherapy was proposed as a promising approach to achieve this goal. We found that cytostatic activation of p53 protects cells against MLN4924-induced toxicity and importantly the effects are reversible. In contrast, cells with mutant or no p53 remain sensitive to NEDD8 inhibition. Using zebrafish embryos, we show that MLN4924-induced apoptosis is reduced upon pre-treatment with actinomycin D in vivo. Our studies show that the cellular effects of NEDD8 inhibition can be manipulated based on the p53 status and that NEDD8 inhibitors can be used in a p53-based cyclotherapy protocol to specifically target cancer cells devoid of wild type p53 function, while healthy cells will be protected from the induced toxicity.