Cargando…
A Spatial Hierarchical Analysis of the Temporal Influences of the El Niño-Southern Oscillation and Weather on Dengue in Kalutara District, Sri Lanka
Dengue is the major public health burden in Sri Lanka. Kalutara is one of the highly affected districts. Understanding the drivers of dengue is vital in controlling and preventing the disease spread. This study focuses on quantifying the influence of weather variability on dengue incidence over 10 M...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129297/ https://www.ncbi.nlm.nih.gov/pubmed/27827943 http://dx.doi.org/10.3390/ijerph13111087 |
_version_ | 1782470566372966400 |
---|---|
author | Liyanage, Prasad Tissera, Hasitha Sewe, Maquins Quam, Mikkel Amarasinghe, Ananda Palihawadana, Paba Wilder-Smith, Annelies Louis, Valérie R. Tozan, Yesim Rocklöv, Joacim |
author_facet | Liyanage, Prasad Tissera, Hasitha Sewe, Maquins Quam, Mikkel Amarasinghe, Ananda Palihawadana, Paba Wilder-Smith, Annelies Louis, Valérie R. Tozan, Yesim Rocklöv, Joacim |
author_sort | Liyanage, Prasad |
collection | PubMed |
description | Dengue is the major public health burden in Sri Lanka. Kalutara is one of the highly affected districts. Understanding the drivers of dengue is vital in controlling and preventing the disease spread. This study focuses on quantifying the influence of weather variability on dengue incidence over 10 Medical Officer of Health (MOH) divisions of Kalutara district. Weekly weather variables and data on dengue notifications, measured at 10 MOH divisions in Kalutara from 2009 to 2013, were retrieved and analysed. Distributed lag non-linear model and hierarchical-analysis was used to estimate division specific and overall relationships between weather and dengue. We incorporated lag times up to 12 weeks and evaluated models based on the Akaike Information Criterion. Consistent exposure-response patterns between different geographical locations were observed for rainfall, showing increasing relative risk of dengue with increasing rainfall from 50 mm per week. The strongest association with dengue risk centred around 6 to 10 weeks following rainfalls of more than 300 mm per week. With increasing temperature, the overall relative risk of dengue increased steadily starting from a lag of 4 weeks. We found similarly a strong link between the Oceanic Niño Index to weather patterns in the district in Sri Lanka and to dengue at a longer latency time confirming these relationships. Part of the influences of rainfall and temperature can be seen as mediator in the causal pathway of the Ocean Niño Index, which may allow a longer lead time for early warning signals. Our findings describe a strong association between weather, El Niño-Southern Oscillation and dengue in Sri Lanka. |
format | Online Article Text |
id | pubmed-5129297 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-51292972016-12-11 A Spatial Hierarchical Analysis of the Temporal Influences of the El Niño-Southern Oscillation and Weather on Dengue in Kalutara District, Sri Lanka Liyanage, Prasad Tissera, Hasitha Sewe, Maquins Quam, Mikkel Amarasinghe, Ananda Palihawadana, Paba Wilder-Smith, Annelies Louis, Valérie R. Tozan, Yesim Rocklöv, Joacim Int J Environ Res Public Health Article Dengue is the major public health burden in Sri Lanka. Kalutara is one of the highly affected districts. Understanding the drivers of dengue is vital in controlling and preventing the disease spread. This study focuses on quantifying the influence of weather variability on dengue incidence over 10 Medical Officer of Health (MOH) divisions of Kalutara district. Weekly weather variables and data on dengue notifications, measured at 10 MOH divisions in Kalutara from 2009 to 2013, were retrieved and analysed. Distributed lag non-linear model and hierarchical-analysis was used to estimate division specific and overall relationships between weather and dengue. We incorporated lag times up to 12 weeks and evaluated models based on the Akaike Information Criterion. Consistent exposure-response patterns between different geographical locations were observed for rainfall, showing increasing relative risk of dengue with increasing rainfall from 50 mm per week. The strongest association with dengue risk centred around 6 to 10 weeks following rainfalls of more than 300 mm per week. With increasing temperature, the overall relative risk of dengue increased steadily starting from a lag of 4 weeks. We found similarly a strong link between the Oceanic Niño Index to weather patterns in the district in Sri Lanka and to dengue at a longer latency time confirming these relationships. Part of the influences of rainfall and temperature can be seen as mediator in the causal pathway of the Ocean Niño Index, which may allow a longer lead time for early warning signals. Our findings describe a strong association between weather, El Niño-Southern Oscillation and dengue in Sri Lanka. MDPI 2016-11-04 2016-11 /pmc/articles/PMC5129297/ /pubmed/27827943 http://dx.doi.org/10.3390/ijerph13111087 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liyanage, Prasad Tissera, Hasitha Sewe, Maquins Quam, Mikkel Amarasinghe, Ananda Palihawadana, Paba Wilder-Smith, Annelies Louis, Valérie R. Tozan, Yesim Rocklöv, Joacim A Spatial Hierarchical Analysis of the Temporal Influences of the El Niño-Southern Oscillation and Weather on Dengue in Kalutara District, Sri Lanka |
title | A Spatial Hierarchical Analysis of the Temporal Influences of the El Niño-Southern Oscillation and Weather on Dengue in Kalutara District, Sri Lanka |
title_full | A Spatial Hierarchical Analysis of the Temporal Influences of the El Niño-Southern Oscillation and Weather on Dengue in Kalutara District, Sri Lanka |
title_fullStr | A Spatial Hierarchical Analysis of the Temporal Influences of the El Niño-Southern Oscillation and Weather on Dengue in Kalutara District, Sri Lanka |
title_full_unstemmed | A Spatial Hierarchical Analysis of the Temporal Influences of the El Niño-Southern Oscillation and Weather on Dengue in Kalutara District, Sri Lanka |
title_short | A Spatial Hierarchical Analysis of the Temporal Influences of the El Niño-Southern Oscillation and Weather on Dengue in Kalutara District, Sri Lanka |
title_sort | spatial hierarchical analysis of the temporal influences of the el niño-southern oscillation and weather on dengue in kalutara district, sri lanka |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129297/ https://www.ncbi.nlm.nih.gov/pubmed/27827943 http://dx.doi.org/10.3390/ijerph13111087 |
work_keys_str_mv | AT liyanageprasad aspatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT tisserahasitha aspatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT sewemaquins aspatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT quammikkel aspatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT amarasingheananda aspatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT palihawadanapaba aspatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT wildersmithannelies aspatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT louisvalerier aspatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT tozanyesim aspatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT rocklovjoacim aspatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT liyanageprasad spatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT tisserahasitha spatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT sewemaquins spatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT quammikkel spatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT amarasingheananda spatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT palihawadanapaba spatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT wildersmithannelies spatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT louisvalerier spatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT tozanyesim spatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka AT rocklovjoacim spatialhierarchicalanalysisofthetemporalinfluencesoftheelninosouthernoscillationandweatherondengueinkalutaradistrictsrilanka |