Cargando…

Deciphering Brain Insulin Receptor and Insulin‐Like Growth Factor 1 Receptor Signalling

Insulin receptor (IR) and insulin‐like growth factor 1 receptor (IGF1R) are highly conserved receptor tyrosine kinases that share signalling proteins and are ubiquitously expressed in the brain. Central application of insulin or IGF1 exerts several similar physiological outcomes, varying in strength...

Descripción completa

Detalles Bibliográficos
Autor principal: Kleinridders, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129466/
https://www.ncbi.nlm.nih.gov/pubmed/27631195
http://dx.doi.org/10.1111/jne.12433
Descripción
Sumario:Insulin receptor (IR) and insulin‐like growth factor 1 receptor (IGF1R) are highly conserved receptor tyrosine kinases that share signalling proteins and are ubiquitously expressed in the brain. Central application of insulin or IGF1 exerts several similar physiological outcomes, varying in strength, whereas disruption of the corresponding receptors in the brain leads to remarkably different effects on brain size and physiology, thus highlighting the unique effects of the corresponding hormone receptors. Central insulin/IGF1 resistance impacts upon various levels of the IR/IGF1R signalling pathways and is a feature of the metabolic syndrome and neurodegenerative diseases such as Alzheimer's disease. The intricacy of brain insulin and IGF1 signalling represents a challenge for the identification of specific IR and IGF1R signalling differences in pathophysiological conditions. The present perspective sheds light on signalling differences and methodologies for specifically deciphering brain IR and IGF1R signalling.