Cargando…

Microbial Communities of Lycaenid Butterflies Do Not Correlate with Larval Diet

Herbivores possess many counteradaptations to plant defenses, and a growing body of research describes the role of symbiotic gut bacteria in mediating herbivorous diets among insects. However, persistent bacterial symbioses have not been found in Lepidoptera, despite the fact that perhaps 99% of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Whitaker, Melissa R. L., Salzman, Shayla, Sanders, Jon, Kaltenpoth, Martin, Pierce, Naomi E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129467/
https://www.ncbi.nlm.nih.gov/pubmed/27965647
http://dx.doi.org/10.3389/fmicb.2016.01920
Descripción
Sumario:Herbivores possess many counteradaptations to plant defenses, and a growing body of research describes the role of symbiotic gut bacteria in mediating herbivorous diets among insects. However, persistent bacterial symbioses have not been found in Lepidoptera, despite the fact that perhaps 99% of the species in this order are herbivorous. We surveyed bacterial communities in the guts of larvae from 31 species of lycaenid butterflies whose caterpillars had diets ranging from obligate carnivory to strict herbivory. Contrary to our expectations, we found that the bacterial communities of carnivorous and herbivorous caterpillars do not differ in richness, diversity, or composition. Many of the observed bacterial genera are commonly found in soil and plant surfaces, and we detected known homopteran endosymbionts in the guts of homopterophagous species, suggesting that larvae acquire gut bacteria from their food and environment. These results indicate that lycaenid butterflies do not rely on specific bacterial symbioses to mediate their diverse diets, and provide further evidence of taxonomically depauperate bacterial communities among Lepidoptera.