Cargando…

Regio‐ and Stereoselective Homologation of 1,2‐Bis(Boronic Esters): Stereocontrolled Synthesis of 1,3‐Diols and Sch 725674

1,2‐Bis(boronic esters), derived from the enantioselective diboration of terminal alkenes, can be selectively homologated at the primary boronic ester by using enantioenriched primary/secondary lithiated carbamates or benzoates to give 1,3‐bis(boronic esters), which can be subsequently oxidized to t...

Descripción completa

Detalles Bibliográficos
Autores principales: Fawcett, Alexander, Nitsch, Dominik, Ali, Muhammad, Bateman, Joseph M., Myers, Eddie L., Aggarwal, Varinder K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129522/
https://www.ncbi.nlm.nih.gov/pubmed/27781356
http://dx.doi.org/10.1002/anie.201608406
Descripción
Sumario:1,2‐Bis(boronic esters), derived from the enantioselective diboration of terminal alkenes, can be selectively homologated at the primary boronic ester by using enantioenriched primary/secondary lithiated carbamates or benzoates to give 1,3‐bis(boronic esters), which can be subsequently oxidized to the corresponding secondary‐secondary and secondary‐tertiary 1,3‐diols with full stereocontrol. The transformation was applied to a concise total synthesis of the 14‐membered macrolactone, Sch 725674. The nine‐step synthetic route also features a novel desymmetrizing enantioselective diboration of a divinyl carbinol derivative and high‐yielding late‐stage cross‐metathesis and Yamaguchi macrolactonization reactions.