Cargando…

Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells

Cells in homeostasis metabolize glucose mainly through the tricarboxylic acid cycle and oxidative phosphorylation, while activated cells switch their basal metabolism to aerobic glycolysis. In this study, we examined whether metabolic reprogramming toward aerobic glycolysis is important for the host...

Descripción completa

Detalles Bibliográficos
Autores principales: Lachmandas, Ekta, Beigier‐Bompadre, Macarena, Cheng, Shih‐Chin, Kumar, Vinod, van Laarhoven, Arjan, Wang, Xinhui, Ammerdorffer, Anne, Boutens, Lily, de Jong, Dirk, Kanneganti, Thirumala‐Devi, Gresnigt, Mark S., Ottenhoff, Tom H.M., Joosten, Leo A.B., Stienstra, Rinke, Wijmenga, Cisca, Kaufmann, Stefan H.E., van Crevel, Reinout, Netea, Mihai G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129526/
https://www.ncbi.nlm.nih.gov/pubmed/27624090
http://dx.doi.org/10.1002/eji.201546259
_version_ 1782470603506188288
author Lachmandas, Ekta
Beigier‐Bompadre, Macarena
Cheng, Shih‐Chin
Kumar, Vinod
van Laarhoven, Arjan
Wang, Xinhui
Ammerdorffer, Anne
Boutens, Lily
de Jong, Dirk
Kanneganti, Thirumala‐Devi
Gresnigt, Mark S.
Ottenhoff, Tom H.M.
Joosten, Leo A.B.
Stienstra, Rinke
Wijmenga, Cisca
Kaufmann, Stefan H.E.
van Crevel, Reinout
Netea, Mihai G.
author_facet Lachmandas, Ekta
Beigier‐Bompadre, Macarena
Cheng, Shih‐Chin
Kumar, Vinod
van Laarhoven, Arjan
Wang, Xinhui
Ammerdorffer, Anne
Boutens, Lily
de Jong, Dirk
Kanneganti, Thirumala‐Devi
Gresnigt, Mark S.
Ottenhoff, Tom H.M.
Joosten, Leo A.B.
Stienstra, Rinke
Wijmenga, Cisca
Kaufmann, Stefan H.E.
van Crevel, Reinout
Netea, Mihai G.
author_sort Lachmandas, Ekta
collection PubMed
description Cells in homeostasis metabolize glucose mainly through the tricarboxylic acid cycle and oxidative phosphorylation, while activated cells switch their basal metabolism to aerobic glycolysis. In this study, we examined whether metabolic reprogramming toward aerobic glycolysis is important for the host response to Mycobacterium tuberculosis (Mtb). Through transcriptional and metabolite analysis we show that Mtb induces a switch in host cellular metabolism toward aerobic glycolysis in human peripheral blood mononuclear cells (PBMCs). The metabolic switch is TLR2 dependent but NOD2 independent, and is mediated in part through activation of the AKT‐mTOR (mammalian target of rapamycin) pathway. We show that pharmacological inhibition of the AKT/mTOR pathway inhibits cellular responses to Mtb both in vitro in human PBMCs, and in vivo in a model of murine tuberculosis. Our findings reveal a novel regulatory layer of host responses to Mtb that will aid understanding of host susceptibility to Mtb, and which may be exploited for host‐directed therapy.
format Online
Article
Text
id pubmed-5129526
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-51295262016-11-30 Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells Lachmandas, Ekta Beigier‐Bompadre, Macarena Cheng, Shih‐Chin Kumar, Vinod van Laarhoven, Arjan Wang, Xinhui Ammerdorffer, Anne Boutens, Lily de Jong, Dirk Kanneganti, Thirumala‐Devi Gresnigt, Mark S. Ottenhoff, Tom H.M. Joosten, Leo A.B. Stienstra, Rinke Wijmenga, Cisca Kaufmann, Stefan H.E. van Crevel, Reinout Netea, Mihai G. Eur J Immunol Immunity to infection Cells in homeostasis metabolize glucose mainly through the tricarboxylic acid cycle and oxidative phosphorylation, while activated cells switch their basal metabolism to aerobic glycolysis. In this study, we examined whether metabolic reprogramming toward aerobic glycolysis is important for the host response to Mycobacterium tuberculosis (Mtb). Through transcriptional and metabolite analysis we show that Mtb induces a switch in host cellular metabolism toward aerobic glycolysis in human peripheral blood mononuclear cells (PBMCs). The metabolic switch is TLR2 dependent but NOD2 independent, and is mediated in part through activation of the AKT‐mTOR (mammalian target of rapamycin) pathway. We show that pharmacological inhibition of the AKT/mTOR pathway inhibits cellular responses to Mtb both in vitro in human PBMCs, and in vivo in a model of murine tuberculosis. Our findings reveal a novel regulatory layer of host responses to Mtb that will aid understanding of host susceptibility to Mtb, and which may be exploited for host‐directed therapy. John Wiley and Sons Inc. 2016-09-27 2016-11 /pmc/articles/PMC5129526/ /pubmed/27624090 http://dx.doi.org/10.1002/eji.201546259 Text en © 2016 The Authors. European Journal of Immunology published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Immunity to infection
Lachmandas, Ekta
Beigier‐Bompadre, Macarena
Cheng, Shih‐Chin
Kumar, Vinod
van Laarhoven, Arjan
Wang, Xinhui
Ammerdorffer, Anne
Boutens, Lily
de Jong, Dirk
Kanneganti, Thirumala‐Devi
Gresnigt, Mark S.
Ottenhoff, Tom H.M.
Joosten, Leo A.B.
Stienstra, Rinke
Wijmenga, Cisca
Kaufmann, Stefan H.E.
van Crevel, Reinout
Netea, Mihai G.
Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells
title Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells
title_full Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells
title_fullStr Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells
title_full_unstemmed Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells
title_short Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells
title_sort rewiring cellular metabolism via the akt/mtor pathway contributes to host defence against mycobacterium tuberculosis in human and murine cells
topic Immunity to infection
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129526/
https://www.ncbi.nlm.nih.gov/pubmed/27624090
http://dx.doi.org/10.1002/eji.201546259
work_keys_str_mv AT lachmandasekta rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells
AT beigierbompadremacarena rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells
AT chengshihchin rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells
AT kumarvinod rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells
AT vanlaarhovenarjan rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells
AT wangxinhui rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells
AT ammerdorfferanne rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells
AT boutenslily rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells
AT dejongdirk rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells
AT kannegantithirumaladevi rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells
AT gresnigtmarks rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells
AT ottenhofftomhm rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells
AT joostenleoab rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells
AT stienstrarinke rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells
AT wijmengacisca rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells
AT kaufmannstefanhe rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells
AT vancrevelreinout rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells
AT neteamihaig rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells