Cargando…
Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells
Cells in homeostasis metabolize glucose mainly through the tricarboxylic acid cycle and oxidative phosphorylation, while activated cells switch their basal metabolism to aerobic glycolysis. In this study, we examined whether metabolic reprogramming toward aerobic glycolysis is important for the host...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129526/ https://www.ncbi.nlm.nih.gov/pubmed/27624090 http://dx.doi.org/10.1002/eji.201546259 |
_version_ | 1782470603506188288 |
---|---|
author | Lachmandas, Ekta Beigier‐Bompadre, Macarena Cheng, Shih‐Chin Kumar, Vinod van Laarhoven, Arjan Wang, Xinhui Ammerdorffer, Anne Boutens, Lily de Jong, Dirk Kanneganti, Thirumala‐Devi Gresnigt, Mark S. Ottenhoff, Tom H.M. Joosten, Leo A.B. Stienstra, Rinke Wijmenga, Cisca Kaufmann, Stefan H.E. van Crevel, Reinout Netea, Mihai G. |
author_facet | Lachmandas, Ekta Beigier‐Bompadre, Macarena Cheng, Shih‐Chin Kumar, Vinod van Laarhoven, Arjan Wang, Xinhui Ammerdorffer, Anne Boutens, Lily de Jong, Dirk Kanneganti, Thirumala‐Devi Gresnigt, Mark S. Ottenhoff, Tom H.M. Joosten, Leo A.B. Stienstra, Rinke Wijmenga, Cisca Kaufmann, Stefan H.E. van Crevel, Reinout Netea, Mihai G. |
author_sort | Lachmandas, Ekta |
collection | PubMed |
description | Cells in homeostasis metabolize glucose mainly through the tricarboxylic acid cycle and oxidative phosphorylation, while activated cells switch their basal metabolism to aerobic glycolysis. In this study, we examined whether metabolic reprogramming toward aerobic glycolysis is important for the host response to Mycobacterium tuberculosis (Mtb). Through transcriptional and metabolite analysis we show that Mtb induces a switch in host cellular metabolism toward aerobic glycolysis in human peripheral blood mononuclear cells (PBMCs). The metabolic switch is TLR2 dependent but NOD2 independent, and is mediated in part through activation of the AKT‐mTOR (mammalian target of rapamycin) pathway. We show that pharmacological inhibition of the AKT/mTOR pathway inhibits cellular responses to Mtb both in vitro in human PBMCs, and in vivo in a model of murine tuberculosis. Our findings reveal a novel regulatory layer of host responses to Mtb that will aid understanding of host susceptibility to Mtb, and which may be exploited for host‐directed therapy. |
format | Online Article Text |
id | pubmed-5129526 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-51295262016-11-30 Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells Lachmandas, Ekta Beigier‐Bompadre, Macarena Cheng, Shih‐Chin Kumar, Vinod van Laarhoven, Arjan Wang, Xinhui Ammerdorffer, Anne Boutens, Lily de Jong, Dirk Kanneganti, Thirumala‐Devi Gresnigt, Mark S. Ottenhoff, Tom H.M. Joosten, Leo A.B. Stienstra, Rinke Wijmenga, Cisca Kaufmann, Stefan H.E. van Crevel, Reinout Netea, Mihai G. Eur J Immunol Immunity to infection Cells in homeostasis metabolize glucose mainly through the tricarboxylic acid cycle and oxidative phosphorylation, while activated cells switch their basal metabolism to aerobic glycolysis. In this study, we examined whether metabolic reprogramming toward aerobic glycolysis is important for the host response to Mycobacterium tuberculosis (Mtb). Through transcriptional and metabolite analysis we show that Mtb induces a switch in host cellular metabolism toward aerobic glycolysis in human peripheral blood mononuclear cells (PBMCs). The metabolic switch is TLR2 dependent but NOD2 independent, and is mediated in part through activation of the AKT‐mTOR (mammalian target of rapamycin) pathway. We show that pharmacological inhibition of the AKT/mTOR pathway inhibits cellular responses to Mtb both in vitro in human PBMCs, and in vivo in a model of murine tuberculosis. Our findings reveal a novel regulatory layer of host responses to Mtb that will aid understanding of host susceptibility to Mtb, and which may be exploited for host‐directed therapy. John Wiley and Sons Inc. 2016-09-27 2016-11 /pmc/articles/PMC5129526/ /pubmed/27624090 http://dx.doi.org/10.1002/eji.201546259 Text en © 2016 The Authors. European Journal of Immunology published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Immunity to infection Lachmandas, Ekta Beigier‐Bompadre, Macarena Cheng, Shih‐Chin Kumar, Vinod van Laarhoven, Arjan Wang, Xinhui Ammerdorffer, Anne Boutens, Lily de Jong, Dirk Kanneganti, Thirumala‐Devi Gresnigt, Mark S. Ottenhoff, Tom H.M. Joosten, Leo A.B. Stienstra, Rinke Wijmenga, Cisca Kaufmann, Stefan H.E. van Crevel, Reinout Netea, Mihai G. Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells |
title | Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells |
title_full | Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells |
title_fullStr | Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells |
title_full_unstemmed | Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells |
title_short | Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells |
title_sort | rewiring cellular metabolism via the akt/mtor pathway contributes to host defence against mycobacterium tuberculosis in human and murine cells |
topic | Immunity to infection |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129526/ https://www.ncbi.nlm.nih.gov/pubmed/27624090 http://dx.doi.org/10.1002/eji.201546259 |
work_keys_str_mv | AT lachmandasekta rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells AT beigierbompadremacarena rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells AT chengshihchin rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells AT kumarvinod rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells AT vanlaarhovenarjan rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells AT wangxinhui rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells AT ammerdorfferanne rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells AT boutenslily rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells AT dejongdirk rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells AT kannegantithirumaladevi rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells AT gresnigtmarks rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells AT ottenhofftomhm rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells AT joostenleoab rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells AT stienstrarinke rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells AT wijmengacisca rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells AT kaufmannstefanhe rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells AT vancrevelreinout rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells AT neteamihaig rewiringcellularmetabolismviatheaktmtorpathwaycontributestohostdefenceagainstmycobacteriumtuberculosisinhumanandmurinecells |