Cargando…
Bayesian joint ordinal and survival modeling for breast cancer risk assessment
We propose a joint model to analyze the structure and intensity of the association between longitudinal measurements of an ordinal marker and time to a relevant event. The longitudinal process is defined in terms of a proportional‐odds cumulative logit model. Time‐to‐event is modeled through a left‐...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129536/ https://www.ncbi.nlm.nih.gov/pubmed/27523800 http://dx.doi.org/10.1002/sim.7065 |
_version_ | 1782470605789986816 |
---|---|
author | Armero, C. Forné, C. Rué, M. Forte, A. Perpiñán, H. Gómez, G. Baré, M. |
author_facet | Armero, C. Forné, C. Rué, M. Forte, A. Perpiñán, H. Gómez, G. Baré, M. |
author_sort | Armero, C. |
collection | PubMed |
description | We propose a joint model to analyze the structure and intensity of the association between longitudinal measurements of an ordinal marker and time to a relevant event. The longitudinal process is defined in terms of a proportional‐odds cumulative logit model. Time‐to‐event is modeled through a left‐truncated proportional‐hazards model, which incorporates information of the longitudinal marker as well as baseline covariates. Both longitudinal and survival processes are connected by means of a common vector of random effects. General inferences are discussed under the Bayesian approach and include the posterior distribution of the probabilities associated to each longitudinal category and the assessment of the impact of the baseline covariates and the longitudinal marker on the hazard function. The flexibility provided by the joint model makes possible to dynamically estimate individual event‐free probabilities and predict future longitudinal marker values. The model is applied to the assessment of breast cancer risk in women attending a population‐based screening program. The longitudinal ordinal marker is mammographic breast density measured with the Breast Imaging Reporting and Data System (BI‐RADS) scale in biennial screening exams. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. |
format | Online Article Text |
id | pubmed-5129536 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-51295362016-11-30 Bayesian joint ordinal and survival modeling for breast cancer risk assessment Armero, C. Forné, C. Rué, M. Forte, A. Perpiñán, H. Gómez, G. Baré, M. Stat Med Research Articles We propose a joint model to analyze the structure and intensity of the association between longitudinal measurements of an ordinal marker and time to a relevant event. The longitudinal process is defined in terms of a proportional‐odds cumulative logit model. Time‐to‐event is modeled through a left‐truncated proportional‐hazards model, which incorporates information of the longitudinal marker as well as baseline covariates. Both longitudinal and survival processes are connected by means of a common vector of random effects. General inferences are discussed under the Bayesian approach and include the posterior distribution of the probabilities associated to each longitudinal category and the assessment of the impact of the baseline covariates and the longitudinal marker on the hazard function. The flexibility provided by the joint model makes possible to dynamically estimate individual event‐free probabilities and predict future longitudinal marker values. The model is applied to the assessment of breast cancer risk in women attending a population‐based screening program. The longitudinal ordinal marker is mammographic breast density measured with the Breast Imaging Reporting and Data System (BI‐RADS) scale in biennial screening exams. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. John Wiley and Sons Inc. 2016-08-14 2016-12-10 /pmc/articles/PMC5129536/ /pubmed/27523800 http://dx.doi.org/10.1002/sim.7065 Text en © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Armero, C. Forné, C. Rué, M. Forte, A. Perpiñán, H. Gómez, G. Baré, M. Bayesian joint ordinal and survival modeling for breast cancer risk assessment |
title | Bayesian joint ordinal and survival modeling for breast cancer risk assessment |
title_full | Bayesian joint ordinal and survival modeling for breast cancer risk assessment |
title_fullStr | Bayesian joint ordinal and survival modeling for breast cancer risk assessment |
title_full_unstemmed | Bayesian joint ordinal and survival modeling for breast cancer risk assessment |
title_short | Bayesian joint ordinal and survival modeling for breast cancer risk assessment |
title_sort | bayesian joint ordinal and survival modeling for breast cancer risk assessment |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129536/ https://www.ncbi.nlm.nih.gov/pubmed/27523800 http://dx.doi.org/10.1002/sim.7065 |
work_keys_str_mv | AT armeroc bayesianjointordinalandsurvivalmodelingforbreastcancerriskassessment AT fornec bayesianjointordinalandsurvivalmodelingforbreastcancerriskassessment AT ruem bayesianjointordinalandsurvivalmodelingforbreastcancerriskassessment AT fortea bayesianjointordinalandsurvivalmodelingforbreastcancerriskassessment AT perpinanh bayesianjointordinalandsurvivalmodelingforbreastcancerriskassessment AT gomezg bayesianjointordinalandsurvivalmodelingforbreastcancerriskassessment AT barem bayesianjointordinalandsurvivalmodelingforbreastcancerriskassessment |