Cargando…
Bayesian joint ordinal and survival modeling for breast cancer risk assessment
We propose a joint model to analyze the structure and intensity of the association between longitudinal measurements of an ordinal marker and time to a relevant event. The longitudinal process is defined in terms of a proportional‐odds cumulative logit model. Time‐to‐event is modeled through a left‐...
Autores principales: | Armero, C., Forné, C., Rué, M., Forte, A., Perpiñán, H., Gómez, G., Baré, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129536/ https://www.ncbi.nlm.nih.gov/pubmed/27523800 http://dx.doi.org/10.1002/sim.7065 |
Ejemplares similares
-
An assessment of existing models for individualized breast cancer risk estimation in a screening program in Spain
por: Arrospide, Arantzazu, et al.
Publicado: (2013) -
Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression
por: Montesinos-López, Osval A., et al.
Publicado: (2015) -
A Bayesian multivariate spatial approach for illness-death survival models
por: Llopis-Cardona, Fran, et al.
Publicado: (2023) -
Longitudinal Joint Modelling of Ordinal and Overdispersed Count Outcomes: A Bridge Distribution for the Ordinal Random Intercept
por: Amini, Payam, et al.
Publicado: (2021) -
ordinalbayes: Fitting Ordinal Bayesian Regression Models to High-Dimensional Data Using R
por: Archer, Kellie J., et al.
Publicado: (2022)