Cargando…
Bilayer Networks within a Hydrogel Shell: A Robust Chassis for Artificial Cells and a Platform for Membrane Studies
The ability to make artificial lipid bilayers compatible with a wide range of environments, and with sufficient structural rigidity for manual handling, would open up a wealth of opportunities for their more routine use in real‐world applications. Although droplet interface bilayers (DIBs) have been...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129564/ https://www.ncbi.nlm.nih.gov/pubmed/27726260 http://dx.doi.org/10.1002/anie.201607571 |
_version_ | 1782470611654672384 |
---|---|
author | Baxani, Divesh K. Morgan, Alex J. L. Jamieson, William D. Allender, Christopher J. Barrow, David A. Castell, Oliver K. |
author_facet | Baxani, Divesh K. Morgan, Alex J. L. Jamieson, William D. Allender, Christopher J. Barrow, David A. Castell, Oliver K. |
author_sort | Baxani, Divesh K. |
collection | PubMed |
description | The ability to make artificial lipid bilayers compatible with a wide range of environments, and with sufficient structural rigidity for manual handling, would open up a wealth of opportunities for their more routine use in real‐world applications. Although droplet interface bilayers (DIBs) have been demonstrated in a host of laboratory applications, from chemical logic to biosynthesis reaction vessels, their wider use is hampered by a lack of mechanical stability and the largely manual methods employed in their production. Multiphase microfluidics has enabled us to construct hierarchical triple emulsions with a semipermeable shell, in order to form robust, bilayer‐bound, droplet networks capable of communication with their external surroundings. These constructs are stable in air, water, and oil environments and overcome a critical obstacle of achieving structural rigidity without compromising environmental interaction. This paves the way for practical application of artificial membranes or droplet networks in diverse areas such as medical applications, drug testing, biophysical studies and their use as synthetic cells. |
format | Online Article Text |
id | pubmed-5129564 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-51295642016-11-30 Bilayer Networks within a Hydrogel Shell: A Robust Chassis for Artificial Cells and a Platform for Membrane Studies Baxani, Divesh K. Morgan, Alex J. L. Jamieson, William D. Allender, Christopher J. Barrow, David A. Castell, Oliver K. Angew Chem Int Ed Engl Communications The ability to make artificial lipid bilayers compatible with a wide range of environments, and with sufficient structural rigidity for manual handling, would open up a wealth of opportunities for their more routine use in real‐world applications. Although droplet interface bilayers (DIBs) have been demonstrated in a host of laboratory applications, from chemical logic to biosynthesis reaction vessels, their wider use is hampered by a lack of mechanical stability and the largely manual methods employed in their production. Multiphase microfluidics has enabled us to construct hierarchical triple emulsions with a semipermeable shell, in order to form robust, bilayer‐bound, droplet networks capable of communication with their external surroundings. These constructs are stable in air, water, and oil environments and overcome a critical obstacle of achieving structural rigidity without compromising environmental interaction. This paves the way for practical application of artificial membranes or droplet networks in diverse areas such as medical applications, drug testing, biophysical studies and their use as synthetic cells. John Wiley and Sons Inc. 2016-10-11 2016-11-07 /pmc/articles/PMC5129564/ /pubmed/27726260 http://dx.doi.org/10.1002/anie.201607571 Text en © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Communications Baxani, Divesh K. Morgan, Alex J. L. Jamieson, William D. Allender, Christopher J. Barrow, David A. Castell, Oliver K. Bilayer Networks within a Hydrogel Shell: A Robust Chassis for Artificial Cells and a Platform for Membrane Studies |
title | Bilayer Networks within a Hydrogel Shell: A Robust Chassis for Artificial Cells and a Platform for Membrane Studies |
title_full | Bilayer Networks within a Hydrogel Shell: A Robust Chassis for Artificial Cells and a Platform for Membrane Studies |
title_fullStr | Bilayer Networks within a Hydrogel Shell: A Robust Chassis for Artificial Cells and a Platform for Membrane Studies |
title_full_unstemmed | Bilayer Networks within a Hydrogel Shell: A Robust Chassis for Artificial Cells and a Platform for Membrane Studies |
title_short | Bilayer Networks within a Hydrogel Shell: A Robust Chassis for Artificial Cells and a Platform for Membrane Studies |
title_sort | bilayer networks within a hydrogel shell: a robust chassis for artificial cells and a platform for membrane studies |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129564/ https://www.ncbi.nlm.nih.gov/pubmed/27726260 http://dx.doi.org/10.1002/anie.201607571 |
work_keys_str_mv | AT baxanidiveshk bilayernetworkswithinahydrogelshellarobustchassisforartificialcellsandaplatformformembranestudies AT morganalexjl bilayernetworkswithinahydrogelshellarobustchassisforartificialcellsandaplatformformembranestudies AT jamiesonwilliamd bilayernetworkswithinahydrogelshellarobustchassisforartificialcellsandaplatformformembranestudies AT allenderchristopherj bilayernetworkswithinahydrogelshellarobustchassisforartificialcellsandaplatformformembranestudies AT barrowdavida bilayernetworkswithinahydrogelshellarobustchassisforartificialcellsandaplatformformembranestudies AT castelloliverk bilayernetworkswithinahydrogelshellarobustchassisforartificialcellsandaplatformformembranestudies |