Cargando…

Genomic variant annotation workflow for clinical applications

Annotation and interpretation of DNA aberrations identified through next-generation sequencing is becoming an increasingly important task. Even more so in the context of data analysis pipelines for medical applications, where genomic aberrations are associated with phenotypic and clinical features....

Descripción completa

Detalles Bibliográficos
Autores principales: Thurnherr, Thomas, Singer, Franziska, Stekhoven, Daniel J., Beerenwinkel, Niko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000Research 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5130070/
https://www.ncbi.nlm.nih.gov/pubmed/27990260
http://dx.doi.org/10.12688/f1000research.9357.2
Descripción
Sumario:Annotation and interpretation of DNA aberrations identified through next-generation sequencing is becoming an increasingly important task. Even more so in the context of data analysis pipelines for medical applications, where genomic aberrations are associated with phenotypic and clinical features. Here we describe a workflow to identify potential gene targets in aberrated genes or pathways and their corresponding drugs. To this end, we provide the R/Bioconductor package rDGIdb, an R wrapper to query the drug-gene interaction database (DGIdb). DGIdb accumulates drug-gene interaction data from 15 different resources and allows filtering on different levels. The rDGIdb package makes these resources and tools available to R users. Moreover, rDGIdb queries can be automated through incorporation of the rDGIdb package into NGS sequencing pipelines.