Cargando…

Achieving timely percutaneous reperfusion for rural ST-elevation myocardial infarction patients by direct transport to an urban PCI-hospital

BACKGROUNDS: ST-elevation myocardial infarction (STEMI) guidelines recommend reperfusion by primary percutaneous coronary intervention (PCI) ≤ 90 min from time of first medical contact (FMC). This strategy is challenging in rural areas lacking a nearby PCI-capable hospital. Recommended reperfusion t...

Descripción completa

Detalles Bibliográficos
Autores principales: Bennin, Charles-Lwanga K, Ibrahim, Saif, Al-Saffar, Farah, Box, Lyndon C, Strom, Joel A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Science Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131199/
https://www.ncbi.nlm.nih.gov/pubmed/27928226
http://dx.doi.org/10.11909/j.issn.1671-5411.2016.10.012
Descripción
Sumario:BACKGROUNDS: ST-elevation myocardial infarction (STEMI) guidelines recommend reperfusion by primary percutaneous coronary intervention (PCI) ≤ 90 min from time of first medical contact (FMC). This strategy is challenging in rural areas lacking a nearby PCI-capable hospital. Recommended reperfusion times can be achieved for STEMI patients presenting in rural areas without a nearby PCI-capable hospital by ground transportation to a central PCI-capable hospital by use of protocol-driven emergency medical service (EMS) STEMI field triage protocol. METHODS: Sixty STEMI patients directly transported by EMS from three rural counties (Nassau, Camden and Charlton Counties) within a 50-mile radius of University of Florida Health-Jacksonville (UFHJ) from 01/01/2009 to 12/31/2013 were identified from its PCI registry. The STEMI field triage protocol incorporated three elements: (1) a cooperative agreement between each of the rural emergency medical service (EMS) agency and UFHJ; (2) performance of a pre-hospital ECG to facilitate STEMI identification and laboratory activation; and (3) direct transfer by ground transportation to the UFHJ cardiac catheterization laboratory. FMC-to-device (FMC2D), door-to-device (D2D), and transit times, the day of week, time of day, and EMS shift times were recorded, and odds ratio (OR) of achieving FMC2D times was calculated. RESULTS: FMC2D times were shorter for in-state STEMIs (81 ± 17 vs. 87 ± 19 min), but D2D times were similar (37 ± 18 vs. 39 ± 21 min). FMC2D ≤ 90 min were achieved in 82.7% in-state STEMIs compared to 52.2% for out-of-state STEMIs (OR = 4.4, 95% CI: 1.24–15.57; P = 0.018). FMC2D times were homogenous after adjusting for weekday vs. weekend, EMS shift times. Nine patients did not meet FMC2D ≤ 90 min. Six were within 10 min of target; all patient achieved FMC2D ≤ 120 min. CONCLUSIONS: Guideline-compliant FMC2D ≤ 90 min is achievable for rural STEMI patients within a 50 mile radius of a PCI-capable hospital by use of protocol-driven EMS ground transportation. As all patients achieved a FMC2D time ≤ 120 min, bypass of non-PCI capable hospitals may be reasonable in this situation.