Cargando…

Irrigation water productivity is more influenced by agronomic practice factors than by climatic factors in Hexi Corridor, Northwest China

Quantifying the influence of driving factors on irrigation water productivity (IWP) is vital for efficient agricultural water use. This study analyzed contributions of agronomic practice and climatic factors to the changes of IWP, based on the data from 1981 to 2012 in Hexi Corridor, Northwest China...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xiaolin, Zhang, Xiaotao, Niu, Jun, Tong, Ling, Kang, Shaozhong, Du, Taisheng, Li, Sien, Ding, Risheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131340/
https://www.ncbi.nlm.nih.gov/pubmed/27905483
http://dx.doi.org/10.1038/srep37971
Descripción
Sumario:Quantifying the influence of driving factors on irrigation water productivity (IWP) is vital for efficient agricultural water use. This study analyzed contributions of agronomic practice and climatic factors to the changes of IWP, based on the data from 1981 to 2012 in Hexi Corridor, Northwest China. Cobb-Douglas production functions were developed by the partial least squares method and contribution rates of the driving factors were calculated. Results showed that IWP and its driving factors increased during the study period, with different changing patterns. IWP was significantly correlated with the agronomic practice factors, daily mean temperature and solar radiation of the crop growing period. The agronomic practice factors including irrigation, fertilization, agricultural film, and agricultural pesticide contributed 20.6%, 32.8%, 42.3% and 11.1% respectively to the increase of IWP; and the contribution rates of the climatic factors, i.e. daily mean temperature and solar radiation, are −0.9% and 0.9%. And the contributions of these factors changed in different sub-periods. It is concluded that agronomic practice factors influenced IWP much more than climatic factors. The improvement of IWP should rely on advanced water-saving technology and application of optimum (need-based) fertilizer, agricultural film and pesticide, ensuring efficient use of agronomic inputs in the study area.