Cargando…
Crystallizing highly-likely subspaces that contain an unknown quantum state of light
In continuous-variable tomography, with finite data and limited computation resources, reconstruction of a quantum state of light is performed on a finite-dimensional subspace. In principle, the data themselves encode all information about the relevant subspace that physically contains the state. We...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131478/ https://www.ncbi.nlm.nih.gov/pubmed/27905511 http://dx.doi.org/10.1038/srep38123 |
_version_ | 1782470904515657728 |
---|---|
author | Teo, Yong Siah Mogilevtsev, Dmitri Mikhalychev, Alexander Řeháček, Jaroslav Hradil, Zdeněk |
author_facet | Teo, Yong Siah Mogilevtsev, Dmitri Mikhalychev, Alexander Řeháček, Jaroslav Hradil, Zdeněk |
author_sort | Teo, Yong Siah |
collection | PubMed |
description | In continuous-variable tomography, with finite data and limited computation resources, reconstruction of a quantum state of light is performed on a finite-dimensional subspace. In principle, the data themselves encode all information about the relevant subspace that physically contains the state. We provide a straightforward and numerically feasible procedure to uniquely determine the appropriate reconstruction subspace by extracting this information directly from the data for any given unknown quantum state of light and measurement scheme. This procedure makes use of the celebrated statistical principle of maximum likelihood, along with other validation tools, to grow an appropriate seed subspace into the optimal reconstruction subspace, much like the nucleation of a seed into a crystal. Apart from using the available measurement data, no other assumptions about the source or preconceived parametric model subspaces are invoked. This ensures that no spurious reconstruction artifacts are present in state reconstruction as a result of inappropriate choices of the reconstruction subspace. The procedure can be understood as the maximum-likelihood reconstruction for quantum subspaces, which is an analog to, and fully compatible with that for quantum states. |
format | Online Article Text |
id | pubmed-5131478 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-51314782016-12-15 Crystallizing highly-likely subspaces that contain an unknown quantum state of light Teo, Yong Siah Mogilevtsev, Dmitri Mikhalychev, Alexander Řeháček, Jaroslav Hradil, Zdeněk Sci Rep Article In continuous-variable tomography, with finite data and limited computation resources, reconstruction of a quantum state of light is performed on a finite-dimensional subspace. In principle, the data themselves encode all information about the relevant subspace that physically contains the state. We provide a straightforward and numerically feasible procedure to uniquely determine the appropriate reconstruction subspace by extracting this information directly from the data for any given unknown quantum state of light and measurement scheme. This procedure makes use of the celebrated statistical principle of maximum likelihood, along with other validation tools, to grow an appropriate seed subspace into the optimal reconstruction subspace, much like the nucleation of a seed into a crystal. Apart from using the available measurement data, no other assumptions about the source or preconceived parametric model subspaces are invoked. This ensures that no spurious reconstruction artifacts are present in state reconstruction as a result of inappropriate choices of the reconstruction subspace. The procedure can be understood as the maximum-likelihood reconstruction for quantum subspaces, which is an analog to, and fully compatible with that for quantum states. Nature Publishing Group 2016-12-01 /pmc/articles/PMC5131478/ /pubmed/27905511 http://dx.doi.org/10.1038/srep38123 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Teo, Yong Siah Mogilevtsev, Dmitri Mikhalychev, Alexander Řeháček, Jaroslav Hradil, Zdeněk Crystallizing highly-likely subspaces that contain an unknown quantum state of light |
title | Crystallizing highly-likely subspaces that contain an unknown quantum state of light |
title_full | Crystallizing highly-likely subspaces that contain an unknown quantum state of light |
title_fullStr | Crystallizing highly-likely subspaces that contain an unknown quantum state of light |
title_full_unstemmed | Crystallizing highly-likely subspaces that contain an unknown quantum state of light |
title_short | Crystallizing highly-likely subspaces that contain an unknown quantum state of light |
title_sort | crystallizing highly-likely subspaces that contain an unknown quantum state of light |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131478/ https://www.ncbi.nlm.nih.gov/pubmed/27905511 http://dx.doi.org/10.1038/srep38123 |
work_keys_str_mv | AT teoyongsiah crystallizinghighlylikelysubspacesthatcontainanunknownquantumstateoflight AT mogilevtsevdmitri crystallizinghighlylikelysubspacesthatcontainanunknownquantumstateoflight AT mikhalychevalexander crystallizinghighlylikelysubspacesthatcontainanunknownquantumstateoflight AT rehacekjaroslav crystallizinghighlylikelysubspacesthatcontainanunknownquantumstateoflight AT hradilzdenek crystallizinghighlylikelysubspacesthatcontainanunknownquantumstateoflight |