Cargando…
Adaptive swarm cluster-based dynamic multi-objective synthetic minority oversampling technique algorithm for tackling binary imbalanced datasets in biomedical data classification
BACKGROUND: An imbalanced dataset is defined as a training dataset that has imbalanced proportions of data in both interesting and uninteresting classes. Often in biomedical applications, samples from the stimulating class are rare in a population, such as medical anomalies, positive clinical tests,...
Autores principales: | Li, Jinyan, Fong, Simon, Sung, Yunsick, Cho, Kyungeun, Wong, Raymond, Wong, Kelvin K. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131504/ https://www.ncbi.nlm.nih.gov/pubmed/27980678 http://dx.doi.org/10.1186/s13040-016-0117-1 |
Ejemplares similares
-
Adaptive Swarm Balancing Algorithms for rare-event prediction in imbalanced healthcare data
por: Li, Jinyan, et al.
Publicado: (2017) -
An oversampling method for imbalanced data based on spatial distribution of minority samples SD-KMSMOTE
por: Yang, Wensheng, et al.
Publicado: (2022) -
Selective oversampling approach for strongly imbalanced data
por: Gnip, Peter, et al.
Publicado: (2021) -
A Boundary-Information-Based Oversampling Approach to Improve Learning Performance for Imbalanced Datasets
por: Li, Der-Chiang, et al.
Publicado: (2022) -
Imbalanced classification for protein subcellular localization with multilabel oversampling
por: Rana, Priyanka, et al.
Publicado: (2022)